Skip to main content
Log in

Mate-recognition and species boundaries in the ascomycetes

  • Review
  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Reproductive gene evolution is commonly invoked as a source of reproductive isolation during speciation. This possibility has not been adequately explored in the Ascomycota, the most species-rich fungal phylum. The mechanisms of mate-recognition in this group are relatively simple: a “mating type” locus determines reproductive mode and sexual compatibility, and two pheromone/receptor pairs control sexual attraction. However, ascomycete reproductive genes can experience unique and interesting evolutionary forces, which could lead to rapid divergence. In this review, we examine the mechanisms of sexual interaction in ascomycetes and explore current evidence as to whether these mechanisms allow for species-specificity in mate-recognition. We discuss the evolutionary forces that can drive reproductive gene divergence, how these may apply in the world of ascomycetes, and their possible consequences for speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alby K, Schaefer D, Bennett RJ (2010) Sexual reproduction in the Candida clade: cryptic cycles, diverse mechanisms, and alternative functions. NIH Public Access 460(7257):890–893

  • Amselem J, Cuomo C, van Kan JL, Viaud M, Benito EP, Coutinho PM et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS genetics 7(8):e1002230

    Article  PubMed  CAS  Google Scholar 

  • Arnaise S, Zickler D, Glass NL (1993) Heterologous expression of mating-type genes in filamentous fungi. Proc Natl Acad Sci U S A 90(14):6616–6620

    Article  PubMed  CAS  Google Scholar 

  • Beatty NP, Smith ML, Louise Glass N (1994) Molecular characterization of mating-type loci in selected homothallic species of Neurospora, Gelasinospora and Anixiella. Mycol Res 98(11):1309–1316

    Article  CAS  Google Scholar 

  • Bender A, Sprague F (1989) Pheromones and Pheromone Receptors Are the Primary Determinants of Mating Specificity in the Yeast Saccharomyces cerevisiae. Genetics 121:463–476

    PubMed  CAS  Google Scholar 

  • Bennett RJ, Johnson AD (2003) Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. The European Molecular Biology Organization Journal 22(10):2505–2515

    CAS  Google Scholar 

  • Berbee M, Taylor J (1992) 18S Ribosomal RNA gene sequence characters place the human pathogen Sporothrix schenckii in the genus Ophiostoma. Exp Mycol 91:87–91

    Article  Google Scholar 

  • Bistis GN (1981) Chemotropic Interactions between Trichogynes and Conidia of Opposite Mating-Type in Neurospora crassa. Mycologia 73(5):959–975

    Article  Google Scholar 

  • Bistis GN (1983) Evidence for diffusible, mating-type-specific trichogyne attractants in Neurospora crassa. Exp Mycol 7:292–295

    Article  CAS  Google Scholar 

  • Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804

    Article  PubMed  CAS  Google Scholar 

  • Brake AJ, Brenner C, Najarian R, Laybourn P, Merrywheather J (1985) Structure of genes encoding precursors of the yeast peptide mating pheromone a-factor. In: Gething MJ (ed) Protein transport and secretion. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581):537–541

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Mendonça-Previato L, Ballou CE (1980) Cell-cell recognition in yeast: purification of Hansenula wingei 21-cell sexual agglutination factor and comparison of the factors from three genera. Proc Natl Acad Sci U S A 77:318–322

    Article  PubMed  CAS  Google Scholar 

  • Caldwell GA, Naider F, Becker JM (1995) Fungal lipopeptide mating pheromones: A model system for the study of protein prenylation. Microbiol Rev 59:406–422

    PubMed  CAS  Google Scholar 

  • Caplan S, Green R, Rocco J, Kurjan J (1991) Glycosylation and structure of the yeast MF alpha 1 alpha-factor precursor is important for efficient transport through the secretory pathway. Journal Of Bacteriology 173(2):627–635

    PubMed  CAS  Google Scholar 

  • Chen P, Sapperstein SK, Choi JD, Michaelis S (1997) Biogenesis of the Saccharomyces cerevisiae mating pheromone a-factor. The Journal of Cell Biology 136:251–269

    Article  PubMed  CAS  Google Scholar 

  • Cisar CR, TeBeest DO, Spiegel FW (1994) Sequence similarity of mating type idiomorphs: a method which detects similarity among the Sordariaceae fails to detect similar sequences in other filamentous Ascomycetes. Mycologia 86:540–546

    Article  Google Scholar 

  • Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131:11–22

    Article  PubMed  CAS  Google Scholar 

  • Coppin E, de Renty C, Debuchy R (2005) The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryotic Cell 4:407–420

    Article  PubMed  CAS  Google Scholar 

  • Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous Ascomycetes. Microbiol Mol Biol Rev 61:411–428

    PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Daniels KJ, Srikantha T, Lockhart SR, Pujol C, Soll DR (2006) Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J 25(10):2240–2252

    Article  PubMed  CAS  Google Scholar 

  • Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW (2003) Reproductive isolation and phylogenetic divergence in Neurospora: Comparing methods of species recognition in a model eukaryote. Evolution 57:2721–2741

    PubMed  Google Scholar 

  • Duntze W, Betz R, Nientiedt M (1991) Pheromones in yeasts. In: Wessels JMF (ed) The Mycota I: Growth, differentiation and sexuality. Springer Verlag, Heidelberg, pp 381–399

    Google Scholar 

  • Dyer PS, Paoletti M, Archer DB (2003) Genomics reveals sexual secrets of Aspergillus. Microbiology (Reading, England), 149(Pt 9), 2301–2303

    Google Scholar 

  • Dyer PS, O’Gorman CM (2011) A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol 14(6):649–654

    Article  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma L-J, Wortman JR, Batzoglou S, Lee S-I et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438(7071):1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Galindo BE, Vacquier VD, Swanson WJ (2003) Positive selection in the egg receptor for abalone sperm lysin. Proc Natl Acad Sci U S A 100:4639–4643

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets S (2000) Rapid evolution of reproductive barriers driven by sexual conflict. Nature 403:886–889

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets S, Arnqvist G, Friberg U (2001) The evolution of female mate choice by sexual conflict. Proc R Soc London, Ser B 268:531–539

    Article  CAS  Google Scholar 

  • Gibson AK, Hood ME, Giraud T (2011) Sibling Competition Arena: Selfing and a Competition Arena Can Combine To Constitute a Barrier To Gene Flow in Sympatry. Evolution, 1–14.

  • Giraud T, Gourbière S (2012) The tempo and modes of evolution of reproductive isolation in fungi. Heredity 109(4):204–214

    Article  PubMed  CAS  Google Scholar 

  • Giraud T, Refrégier G, Le Gac M, de Vienne DM, Hood ME (2008) Speciation in fungi. Fungal Genetics and Biology 45:791–802

    Article  PubMed  CAS  Google Scholar 

  • Glass NL, Metzenberg RL, Raju NB (1990) Homothallic Sordariaceae from nature: The absence of strains containing only thea mating type sequence. Exp Mycol 14(3):274–289

    Article  Google Scholar 

  • Glass NL, Smith ML (1994) Structure and function of a mating-type gene from the homothallic species Neurospora africana. Mol Gen Genet 244:401–409

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves-Sá J, Murray A (2011) Asymmetry in sexual pheromones is not required for ascomycete mating. Current biology: CB 21(16):1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Haynes KF, Yeargan KV (1999) Exploitation of intraspecific communication systems: Illicit signalers and receivers. Annals of the Entomological Society of America 92:960–970

    Google Scholar 

  • Heitman J (2010) Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell host microbe 8(1):86–99

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757

    Article  PubMed  CAS  Google Scholar 

  • Hisatomi T, Yanagishima N, Sakurai A, Kobayashi H (1988) Interspecific actions of α mating pheromones on the a mating-type cells of three Saccharomyces yeasts. Curr Genet 13:25–27

    Article  PubMed  CAS  Google Scholar 

  • Howard DJ (1993) Reinforcement: Origin, dynamics and fate of an evolutionary hypothesis. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, England

    Google Scholar 

  • Idnurm A (2011) Sex and speciation: The paradox that non-recombining DNA promotes recombination. Fungal Biology Reviews 25(3):121–127

    Article  PubMed  Google Scholar 

  • Jones SK, Bennett RJ (2011) Fungal mating pheromones: Choreographing the dating game. Fungal genetics and biology FG B 48(7):668–676

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Nygren K, Johannesson H (2008) The evolution of the pheromonal signal system and its potential role for reproductive isolation in heterothallic Neurospora. Mol Biol Evol 25:168–178

    Article  PubMed  CAS  Google Scholar 

  • Kim H-K, Lee T, Yun S-H (2008) A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genetics and Biology 45:1188–1196

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Borkovich KA (2004) A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52:1781–1798

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Borkovich KA (2006) Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryotic Cell 5:544–554

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Metzenberg RL, Nelson MA (2002) Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryotic Cell 1:987–999

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Wright SJ, Park G, Ouyang S, Krystofova S, Borkovich K (2012) Roles for receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics 190(4):1389–1404

    Article  PubMed  CAS  Google Scholar 

  • Kohn LM (2005) Mechanisms of fungal speciation. Annu Rev Phytopathol 43(11):279–308

    Article  PubMed  CAS  Google Scholar 

  • Kronstad JW, Staben C (1997) Mating type in filamentous fungi. Annu Rev Genet 31:245–276

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman EG (1982) Varieties of Gibberella fujikuroi with Anamorphs in Fusarium Section Mycologia 74: 759–768

  • Kurjan J (1993) The pheromone response pathway in Saccharomyces cerevisiae. Annu Rev Genet 27:147–179

    Article  PubMed  CAS  Google Scholar 

  • Kvas M, Marasas W, Wingfield B (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex, 1–21.

  • Le Gac M, Giraud T (2008) Existence of a pattern of reproductive character displacement in Homobasidiomycota but not in Ascomycota. J Evol Biol 21:761–772

    Article  PubMed  Google Scholar 

  • Lee J, Lee T, Lee YW, Yun SH, Turgeon BG (2003) Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol Microbiol 50:145–152

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Leslie JF, Bowden RL (2008) Expression and function of sex pheromones and receptors in the homothallic ascomycete Gibberella zeae. Eukaryotic Cell 7:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Ni M, Li W, Shertz C, Heitman J (2010) The evolution of sex: A perspective from the fungal kingdom. Microbiol Mol Biol Rev 74:298–340

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF, Klein KK (1996) Female fertility and mating type effects on effective population size and evolution in filamentous fungi. Genetics 144:557–567

    PubMed  CAS  Google Scholar 

  • Lobuglio KF, Pitt JI, Taylor JW (1993) Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual talaromyces state among asexual penicillium species in subgenus biverticillium. Mycologia 85(4):592–604

    Article  CAS  Google Scholar 

  • Louis EJ (2011) Population genomics and speciation in yeasts. Fungal Biology Reviews 25(3):136–142

    Article  Google Scholar 

  • Lu S-W, Yun S-H, Lee T, Turgeon BG (2011) Altering sexual reproductive mode by interspecific exchange of MAT loci. Fungal genetics and biology FG B 48(7):714–724

    Article  PubMed  CAS  Google Scholar 

  • Martin SH, Wingfield BD, Wingfield MJ, Steenkamp ET (2011a) Causes and consequences of variability in peptide mating pheromones of ascomycete fungi. Mol Biol Evol 28(7):1987–2003

    Article  PubMed  CAS  Google Scholar 

  • Martin SH, Wingfield BD, Wingfield MJ, Steenkamp ET (2011b) Structure and evolution of the Fusarium mating type locus: new insights from the Gibberella fujikuroi complex. Fungal genetics and biology: FG & B 48(7):731–740

    Article  CAS  Google Scholar 

  • Mayrhofer S, Weber JM, Pöggeler S (2006) Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora. Genetics 172:1521–1533

    Article  PubMed  CAS  Google Scholar 

  • McCullough J, Herskowitz I (1979) Mating pheromones of Saccharomyces kluyveri: pheromone interactions between Saccharomyces kluyveri and Saccharomyces cerevisiae. J Bacteriol 138:146–154

    PubMed  CAS  Google Scholar 

  • Menkis A, Whittle CA, Johannesson H (2010) Gene genealogies indicates abundant gene conversions and independent evolutionary histories of the mating-type chromosomes in the evolutionary history of Neurospora tetrasperma. BMC Evol Biol 10:234

    Article  PubMed  CAS  Google Scholar 

  • Metzenberg RL, Glass NL (1990) Mating type and mating strategies in Neurospora. BioEssays news and reviews in molecular cellular and developmental biology 12(2):53–59

    Article  CAS  Google Scholar 

  • Murphy HA, Kuehne HA, Francis CA, Sniegowski PD (2006) Mate choice assays and mating propensity differences in natural yeast populations. Biol Lett 2:553–556

    Article  PubMed  Google Scholar 

  • Naider F, Becker JM (2004) The α-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides 25:1441–1463

    Article  PubMed  CAS  Google Scholar 

  • Nakayama N, Miyajima A, Arai K (1985) Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 4:2643

    PubMed  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39(1):121–152

    Article  PubMed  CAS  Google Scholar 

  • Nelson MA, Kang S, Braun EL, Crawford ME, Dolan PL, Leonard PM, Mitchell J, Armijo AM, Bean L, Blueyes E, Cushing T, Errett A, Fleharty M, Gorman M, Judson K, Miller R, Ortega J, Pavlova I, Perea J, Todisco S, Trujillo R, Valentine J, Wells A, Werner-Washburne M, Yazzie S, Natvig DO (1997) Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa. Fungal Genetics and Biology 21:348–363

    Article  PubMed  CAS  Google Scholar 

  • Nosil P, Crespi B, Gries R, Gries G (2007) Natural selection and divergence in mate preference during speciation. Genetica 129:309–327

    Article  PubMed  Google Scholar 

  • Nygren K, Strandberg R, Wallberg A, Nabholz B, Gustafsson T, García D, Cano J et al (2011) A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Molecular Phylogenetics and Evolution 59(3):649–663

    Article  PubMed  Google Scholar 

  • O’Donnell K, Ward TJ, Geiser DM, Corby Kistler H, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal genetics and biology 41(6):600–623

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90(3):465–493

    Article  Google Scholar 

  • Palumbi SR (2008) Speciation and the evolution of gamete recognition genes: pattern and process. Heredity 102:66–76

    Article  PubMed  CAS  Google Scholar 

  • Paoletti M, Buck KW, Brasier CM (2006) Selective acquisition of novel mating type and vegetative incompatibility genes via interspecies gene transfer in the globally invading eukaryote Ophiostoma novo-ulmi. Mol Ecol 15:249–262

    Article  PubMed  CAS  Google Scholar 

  • Paoletti M, Seymour F, Alcocer MJC, Kaur N, Calvo AM, Archer DB, Dyer PS (2007) Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Current biology: CB 17(16):1384–1389

    Article  PubMed  CAS  Google Scholar 

  • Paterson HEH (1985) The recognition concept of species. In: Vrba E (ed) Species and speciation. Transvaal Museum, Pretoria, South Africa, pp 21–29

    Google Scholar 

  • Pöggeler S (2000) Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Curr Genet 37:403–411

    Article  PubMed  Google Scholar 

  • Pöggeler S, Kück U (2001) Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280(1–2):9–17

    Article  PubMed  Google Scholar 

  • Pöggeler S, Nowrousian M, Kück U (2006) Fruiting-body development in Ascomycetes. In: Kües U, Fischer R (eds) Growth, differentiation and sexuality. Springer, Berlin, Heidelberg, pp 325–355

    Chapter  Google Scholar 

  • Pöggeler S, Risch S, Kuck U, Osiewacz HD (1997) Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147:567–580

    PubMed  Google Scholar 

  • Pöggeler S, Hoff B, Kück U (2008) Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol 74(19):6006–6016

    Article  PubMed  CAS  Google Scholar 

  • Sahni N, Yi S, Daniels KJ, Huang G, Srikantha T, Soll DR (2010) Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways. PLoS biology 8(5)

  • Saleh D, Milazzo J, Adreit H, Tharreau D, Fournier E (2012) Asexual reproduction induces a rapid and permanent loss of sexual reproduction capacity in the rice fungal pathogen, Magnaporthe oryzae: results of in vitro experimental evolution assays. BMC Evol Biol 12(42)

  • Schmoll M, Seibel C, Tisch D, Dorrer M, Kubicek CP (2010) A novel class of peptide pheromone precursors in ascomycetous fungi. Mol Microbiol 77(6):1483–1501

    Article  PubMed  CAS  Google Scholar 

  • Schoustra SE, Debets AJM, Slakhorst M, Hoekstra RF (2007) Mitotic Recombination Accelerates Adaptation in the Fungus Aspergillus nidulans. PLoS Genetics 3(4):6

    Article  CAS  Google Scholar 

  • Seibel C, Tisch D, Kubicek CP, Schmoll M (2012) The role of pheromone receptors for communication and mating in Hypocrea jecorina (Trichoderma reesei). Fungal genetics and biology: FG & B 49(10):814–824

    Article  CAS  Google Scholar 

  • Seike T, Yamagishi Y, Iio H, Nakamura T, Shimoda C (2012) Remarkably simple sequence requirement of the M-factor pheromone of Schizosaccharomyces pombe. Genetics 191(3):815–825

    Article  PubMed  Google Scholar 

  • Singh A, Chen EY, Lugovoy JM, Chang CN, Hitzeman RA, Seeburg PH (1983) Saccharomyces cerevisiae contains two discrete genes coding for the α-factor pheromone. Nucleic Acids Res 11:4049–4063

    Article  PubMed  CAS  Google Scholar 

  • Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102(1):77–97

    Article  PubMed  CAS  Google Scholar 

  • Strandberg R, Nygren K, Menkis A, James TY, Wik L, Stajich JE, Johannesson H (2010) Conflict between reproductive gene trees and species phylogeny among heterothallic and pseudohomothallic members of the filamentous ascomycete genus Neurospora. Fungal genetics and biology: FG & B 47(10):869–878

    Article  Google Scholar 

  • Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144

    Article  PubMed  CAS  Google Scholar 

  • Symonds MRE, Elgar MA (2008) The evolution of pheromone diversity. Trends in Ecology & Evolution 23:220–228

    Article  Google Scholar 

  • Taylor J, Jacobson D (1999) The evolution of asexual fungi: Reproduction, speciation and classification. Annual Review of, 197–246.

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31:21–32

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR (1989) The meaning of species and speciation: A genetic perspective. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Sunderland, Massachusetts, pp 3–27

    Google Scholar 

  • Turgeon BG, Sharon A, Wirsel S, Yamaguchi K, Christiansen SK, Yoder OC (1995) Structure and function of mating-type genes in Cochliobolus Spp and asexual fungi. Canadian Journal of BotanyRevue Canadienne De Botanique 73:S778–S783

    Article  CAS  Google Scholar 

  • Turgeon BG (1998) Application of mating type gene technology to problems in fungal biology. Annu Rev Phytopathol 36:115–137

    Article  PubMed  CAS  Google Scholar 

  • Turina M, Prodi A, Alfen NKV (2003) Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genetics and Biology 40(3):242–251

    Article  PubMed  CAS  Google Scholar 

  • Turner BC, Perkins DD, Fairfield A (2001) Neurospora from natural populations: A global study. Fungal Genetics and Biology 32:67–92

    Article  PubMed  CAS  Google Scholar 

  • Turner E, Jacobson DJ, Taylor JW (2010) Reinforced postmating reproductive isolation barriers in Neurospora, an Ascomycete microfungus. J Evol Biol 23:1642–1656

    Article  PubMed  CAS  Google Scholar 

  • Turner E, Jacobson DJ, Taylor JW (2011) Genetic architecture of a reinforced, postmating, reproductive isolation barrier between neurospora species indicates evolution via natural selection. (J. C. Fay, Ed.). PLoS Genetics 7(8):e1002204

    Article  PubMed  CAS  Google Scholar 

  • Vacquier V, Swanson W, Lee Y-H (1997) Positive darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence? J Mol Evol 44:S15–S22

    Article  PubMed  CAS  Google Scholar 

  • Wik L, Karlsson M, Johannesson H (2008) The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa. BMC Evol Biol 8:109

    Article  PubMed  CAS  Google Scholar 

  • Whittle C, Nygren K, Johannesson H (2011) Consequences of reproductive mode on genome evolution in fungi. Fungal Genetics and Biology: FG & B 48(7):661–667

    Article  CAS  Google Scholar 

  • Yun SH, Berbee ML, Yoder OC, Turgeon BG (1999) Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci U S A 96(10):5592–5597

    Article  PubMed  CAS  Google Scholar 

  • Yun SH, Arie T, Kaneko I, Yoder OC, Turgeon BG (2000) Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. I: FG & B 31(1):7–20

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Research Foundation (NRF), the DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), the University of Pretoria and the Tree Protection Cooperative Programme (TPCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda D. Wingfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, S.H., Steenkamp, E.T., Wingfield, M.J. et al. Mate-recognition and species boundaries in the ascomycetes. Fungal Diversity 58, 1–12 (2013). https://doi.org/10.1007/s13225-012-0217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0217-2

Keywords

Navigation