Skip to main content

Advertisement

Log in

A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Fungal endophytes have significant effects on host performance including but not limited to changes in reproductive output, as well as, biotic and abiotic stress tolerance. The ultimate mechanisms for resistance to herbivory have been documented in a number of fungal-plant symbiota and involve the production of alkaloids by the fungus. Alkaloids have thus been defined as a currency responsible for increased host resistance to herbivory. We provide support for the hypothesis that another currency may be responsible for increased host tolerance to abiotic stress resulting from endophyte colonization; namely antioxidants. We report comparatively higher activity of antioxidants in endophyte colonized hosts resulting from abiotic stress and propose antioxidants are another currency via which mutualistic interactions between fungal endophytes and their hosts can occur. We recognize fungal endophyte interactions are diverse and complex and include antagonisms, commensalisms, and mutualisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. In: Lester P (ed.) Methods enzymology, Academic Press, pp 121–126

  • Agarwal S (2007) Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol Plant 51:157–160

    Article  CAS  Google Scholar 

  • Alvarez M, Huygens D, Fernandez C, Gacitúa Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. Tree Phys 29:1047–1057

    Article  CAS  Google Scholar 

  • Andrews DF, Pregibon D (1978) Finding the outliers that matter. J Royal Stat Soc Series B 40:85–93

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Pl Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Schnitzer S, Carson W eds. Tropical forest community ecology blackwell scientific, Oxford University Press, pp 254–271

  • Asada K (1992) Ascorbate peroxidase - a hydrogen peroxide-scavenging enzyme in plants. Physiologia Plant 85:235–241

    Article  CAS  Google Scholar 

  • Bacon CW, White JF Jr (1993) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Bae H, Sicher RC, Moon SK, Kim S-H, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Exp Bot 60:3279–3295

    Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczk E, Barna B, Gullner G, Janeczko A, Kogel K-H, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  PubMed  CAS  Google Scholar 

  • Baptista P, Martins A, Pais MS, Tavares RM, Lino-Neto T (2007) Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza 17:185–193

    Article  PubMed  CAS  Google Scholar 

  • Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock W, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    Article  PubMed  Google Scholar 

  • Calderón AA, Zapata JM, Muñoz R, Pedreño MA, Barceló AR (1993) Resveratrol production as part of the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. New Phytol 124:455–463

    Article  Google Scholar 

  • Castillo-Chavez C, Cooke K, Huang W, Levin SA (1989) Results on the dynamics for modeling sexual transmission of the human immunodeficiency virus. App Math Let 2:327–331

    Article  Google Scholar 

  • Cheplick GP, Perera A, Koulouris K (2000) Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct Ecol 14:657–667

    Article  Google Scholar 

  • Clay K (1993) The ecology and evolution of endophytes. Ag Ecosys Environ 44:39–64

    Article  Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Clay K, Marks S, Cheplick GP (1993) Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74:1767–1777

    Article  Google Scholar 

  • Donoso EP, Bustamante RO, Carú M, Niemeyer HM (2008) Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. App Environ Microbiol 74:1412–1417

    Article  CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284

    Article  CAS  Google Scholar 

  • Elmi A, West C (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67

    Article  Google Scholar 

  • Ewald PW (1994) Host-parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol System 14:465–485

    Article  Google Scholar 

  • Faeth SH, Hamilton CE (2006) Does an asexual endophyte symbiont alter life stage and long-term survival in a perennial host grass? Microb Ecol 52:748–755

    Article  PubMed  Google Scholar 

  • Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325

    Article  PubMed  Google Scholar 

  • Faeth SH, Hayes CJ, Gardner DR (2010) Asexual endophytes in a native grass: tradeoffs in mortality, growth, reproduction, and alkaloid production. Microb Ecol 50:496–504

    Article  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Gomez LD, van Heerden PDR (2005) Glutathione. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, pp 1–18

    Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol 48:909–930

    CAS  Google Scholar 

  • Grace SC (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, pp 141–168

    Google Scholar 

  • Hahn H, McManus MT, Warnstorff K, Monahan BJ, Young CA, Davies E, Tapper BA, Scott B (2008) Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ Experiment Bot 63:183–199

    Article  Google Scholar 

  • Hamilton CE, Faeth SH (2005) Asexual, systemic endophytes in grasses: a test of the seed germination and pathogen resistance hypothesis. Symbiosis 38:29–32

    Google Scholar 

  • Hamilton CE, Faeth SH, Dowling TE (2009) Distribution of hybrid fungal symbionts and environmental stress. Microbial Ecol 58:408–413

    Article  Google Scholar 

  • Hamilton CE, Dowling TE, Faeth SH (2010) Hybridization in endophyte symbionts alters host response to moisture and nutrient treatments. Microbial Ecol 59:768–775

    Article  Google Scholar 

  • Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  • Huang W-Y, Cai Y-Z, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Economic Bot 61:14–30

    Article  CAS  Google Scholar 

  • Isaac S (1992) Fungal-plant interactions. Chapman and Hall Publishing, London, UK

    Google Scholar 

  • Jakson DA, Chen Y (2004) Robust principal component analysis and outlier detection with ecological data. Environmetrics 15:129–139

    Article  Google Scholar 

  • Jones TA, Ralphs MH, Gardner DR, Chatterton NH (2000) Cattle prefer endophyte-free robust needlegrass. J Range Manag 53:427–431

    Article  Google Scholar 

  • Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite – what decides? Cur Op Plant Biol 9:358–363

    Article  Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Planta 155:780–790

    CAS  Google Scholar 

  • Lehtonen P, Helander M, Wink M, Sporer F, Saikkonen K (2005) Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecol Let 8:1256–1263

    Article  Google Scholar 

  • Liu X, Mingsheng D, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554

    Article  CAS  Google Scholar 

  • Logan BA (2005) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, pp 250–262

    Google Scholar 

  • Logan BA, Grace SC, Adams WW, Demmig-Adams B (1998) Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecolgia 116:9–17

    Google Scholar 

  • Malinowski CP, Beleskey DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski CP, Beleskey DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grass Sci 52:1–14

    Article  Google Scholar 

  • Malinowski CP, Alloush GA, Beleskey DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 277:115–126

    Article  Google Scholar 

  • Matsouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Biological Cont 100:1213–1221

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Morse LJ, Faeth SH, Day TA (2007) Neotyphodium interactions with wild grasses are driven mainly by endophyte haplotype. Funct Ecol 21:813–822

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neuhauser C, Fargione JE (2004) A mutualism-parasitism continuum model and its application to plant-mycorrhizae interactions. Ecol Model 177:337–352

    Article  Google Scholar 

  • Pang C-H, Wang B-S (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate-glutathione cycle and stress tolerance in plants. In: Anjum NA, Shahid U, Ming-Tsair C (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer Publishing, New York, NY, pp 91–113

    Chapter  Google Scholar 

  • Parrent JL, Peay K, Arnold AE, Comas L, Avis P, Tuininga A (2010) Moving from pattern to process in fungal symbioses: linking functional traits, community ecology, and Phylogenetics. New Phytol 185:882–886

    Article  PubMed  Google Scholar 

  • Quan L-J, Zhang B, Shi W-W, Li J (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integrated Plant Biol 50:2–18

    Article  CAS  Google Scholar 

  • Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LJ, Johnson RD, Simpson WR, Stacke C, Voisey CR, Xue H, Newman JA (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Parsons A, Fraser K, Xue H, Newman JA (2008) Metabolic profiles of endophyte-infected ryegrass. Plant Physiol 146:1440–1453

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Parsons A, Newman JA (2009) Metabolomics analysis of the Lolium perenne-Neotyphodium lolii symbiosis: more than just alkaloids? Phytochem Rev 8:535–550

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (1996) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823

    Article  PubMed  CAS  Google Scholar 

  • Ren AZ, Li X, Han R, Yin LJ, Wei MY, Gao YB (2010) Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant Soil 346:363–373

    Article  Google Scholar 

  • Richardson MD, Freeman GW, Meyer WA, Reddy PV, White JF Jr (1997) Endophytes from fine fescues of Europe and North America. Int Turfgrass Soc 8:913–918

    Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. J Exper Bot 59:1109–1114

    Article  CAS  Google Scholar 

  • Rodriguez R, Henson J, van Volkenburgh E, Hoy M, Wright L, Beckwith F, Yong-Ok K, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rouhier N, Jacquot J-P (2008) Getting sick may help plants overcome abiotic stress. New Phytol 180:738–741

    Article  PubMed  CAS  Google Scholar 

  • Ruijter GJG, Bax J, van de Vondervoort PJI, de Vries RP, vanKuyk PA, Visser J (2003) Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryotic Cell 2:690–698

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fung Biol Rev 21:67–74

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecolog Syst 29:319–343

    Article  Google Scholar 

  • SAS Institute, Inc (2004) version 9.1.3 Car. SAS Institute, North Carolina, USA

    Google Scholar 

  • Schardl C (2002) Epichloë festucae and related mutualistic symbionts of grasses. Func Gen Biol 35:69–79

    Google Scholar 

  • Schardl CL, Phillips TD (1997) Protective grass endophytes. Where are they from and where are they going? Plant Dis 81:430–438

    Article  Google Scholar 

  • Schulthess FM, Faeth SH (1998) Distribution abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia 90:569–578

    Article  Google Scholar 

  • Shao H-B, Chu L-Y, Lu Z-H, Kang C-M (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminum toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (2005) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK

    Book  Google Scholar 

  • Smith IK, Vierhell TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiologia Plant 77:449–456

    Article  CAS  Google Scholar 

  • StatSoft Software version 5.1 for Windows (1998) StatSoft Tulsa, OK, USA

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  • Sullivan TJ, Faeth SH (2004) Gene flow in the endophyte Neotyphodium and implications for coevolution with Festuca arizonica. Molec Ecol 13:649–656

    Article  CAS  Google Scholar 

  • Sullivan TJ, Faeth SH (2008) Local adaptation in Festuca arizonica infected by hybrid and nonhybrid Neotyphodium endophytes. Microb Ecol 55:697–704

    Article  PubMed  CAS  Google Scholar 

  • Tadych M, Bergen M, Dugan FM, White JF Jr (2007) Evaluation of the potential role of water in spread of conidia of the Neotyphodium endophyte of Poa ampla. Mycolog Research 111:466–472

    Article  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Pyoyun P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Van der Weele CM, Spollen WG, Sharp RE, Baskin TI (2000) Growth of Arabidopsis thaliana seedlings under water deficit studies by control of water potential in nutrient-agar media. J Exp Bot 51:1555–1562

    Article  PubMed  Google Scholar 

  • Verslues PE, Bray EA (2004) LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiol 136:2831–2842

    Article  PubMed  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruscaht H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Nat Acad Sci 102:13386–13391

    Article  PubMed  CAS  Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiologia Plant 138:440–446

    Article  CAS  Google Scholar 

  • White JF, Bacon CW, Hywel-Jones, NL, Spatafora, JW (2003) Historical perspectives: human interactions with Clavicipitalean fungi. In: White JF, Bacon CW, Hywel-Jones, NL, Spatafora, JW eds. Clavicipitalean Fungi: evolutionary biology, chemistry, biocontrol, and cultural impacts. New York, NY, pp 1–14

  • Yang Y, Han C, Liu Q, Lin B, Wang W (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30:433–440

    Article  CAS  Google Scholar 

  • Zhang YP, Nan ZB (2007) Growth and anti-oxidative systems changes in Elymus dahuricusis affected by Neotyphodium endophyte under contrasting water availability. J Ag Crop Sci 193:377–386

    Article  CAS  Google Scholar 

  • Zhang YP, Nan ZB (2010) Germination and seedling anti-oxidative enzymes of endophyte-infected populations of Elymus dahuricus under osmotic stress. Seed Sci Technol 38:522–527

    Google Scholar 

Download references

Acknowledgements

We thank Cornell’s Statistical Consulting Unit for a priori and a posteriori help; N. S. Mattson and C. Watkins for generous access to their labs, chemistry, and equipment; Jinwook Lee (Tree Fruit Research Lab, USDA-ARS) for assistance with enzymatic assay protocol development, and the following reviewers for manuscript improvement; P. E. Gundel, G. E. Harman, M. Helander, F. Matsouri, and K. Saikkonen. This research was supported by Graduate Women in Science Fellowship 2010 (CE Hamilton), and New York Tree Research and Education Endowment Fund 2010 “Exploration of Woody Endophytes for Increased Tree Performance (PI: TL Bauerle).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyd E. Hamilton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, C.E., Bauerle, T.L. A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Diversity 54, 39–49 (2012). https://doi.org/10.1007/s13225-012-0156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0156-y

Keywords

Navigation