Skip to main content
Log in

Metabolomics analysis of the Lolium perenneNeotyphodium lolii symbiosis: more than just alkaloids?

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Above ground plant parts of Lolium perenne often harbour endophytic Neotyphodium lolii fungi. These occur both naturally and commercially, as variant strains are introduced to modify the grass metabolic profile. They reside in the apoplastic spaces and rarely cause visible symptoms of infection. The vast majority of literature has focussed on the biosynthesis, accumulation, and ecological relevance of a limited number of alkaloids produced by N. lolii which have been shown to negatively affect insect pests and vertebrate herbivores. Much less is known about the effects of other metabolites in these interactions or the role of resource supply on metabolic profiles, nor critically on the metabolic consequences of differences in the amount (concentration) of endophyte present. Here, we provide a synthesis of some of our recently published studies on effects of resource supply (nitrogen, carbohydrates) on concentrations of endophytes and endophyte specific metabolites in the L. perenneN. lolii association. We present results of both quantitative PCR and targeted metabolomics studies, using contrasting endophyte strains in two perennial ryegrass cultivars. We also present and discuss a hypothetical schematic representation of possible links between plant and fungal metabolic networks. A multiple regression analysis of numerical insect responses and metabolic profiles indicates that effects of endophyte infection on insect population sizes could be predicted by concentrations of a range of metabolites other than alkaloids and depended on insect species, fungal strain, and nitrogen supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Farid IB, Jahangir M, van den Hondel CAMJJ et al (2009) Fungal infection-induced metabolites in Brassica rapa. Plant Sci 176:608–615. doi:10.1016/j.plantsci.2009.01.017

    CAS  Google Scholar 

  • Amalric C, Sallanon H, Monnet F et al (1999) Gas exchange and chlorophyll fluorescence in symbiotic and non-symbiotic ryegrass under water stress. Photosynthetica 37:107–112. doi:10.1023/A:1007027131613

    Google Scholar 

  • Arai T, Mikami Y, Fukushima K et al (1973) A new antibiotic, leucinostatin, derived from Penicillium lilacinum. J Antiobiot 26:157–161

    CAS  Google Scholar 

  • Arechevaleta M, Bacon CW, Plattner RD et al (1992) Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertiliser. Appl Environ Microbiol 58:857–861

    Google Scholar 

  • Bacetty AA, Snook ME, Glenn AE (2007) Nematotoxic effects of endophyte-infected tall fescue toxins and extracts in an in vitro bioassay using the nematode Pratylenchus scribneri. In: Popay AJ, Thorn ER et al (eds) Proceedings of the 6th international symposium on fungal endophytes of grasses. Grasslands research and practice series no. 13. New Zealand Grassland Association, Dunedin, p 357

    Google Scholar 

  • Bailly J, Debaud J-C, Verner M-C et al (2007) How does a symbiotic fungus modulate expression of its host-plant nitrite reductase? New Phytol 175:155–165. doi:10.1111/j.1469-8137.2007.02066.x

    PubMed  CAS  Google Scholar 

  • Ball OJP, Prestidge RA, Sprosen JM (1995) Interrelationships between Acremonium lolii, peramine and lolitrem B in perennial ryegrass. Appl Environ Microbiol 61:1527–1533

    PubMed  CAS  Google Scholar 

  • Ball OJ-P, Barker GM, Prestidge RA et al (1997) Distribution and accumulation of the alkaloid peramine in Neotyphodium lolii-infected perennial ryegrass. J Chem Ecol 23:1419–1434. doi:10.1023/B:JOEC.0000006473.26175.19

    CAS  Google Scholar 

  • Belesky DP, Fedders JM (1996) Does endophyte influence regrowth of tall fescue? Ann Bot (Lond) 78:499–505. doi:10.1006/anbo.1996.0147

    Google Scholar 

  • Belesky DP, Stuedemann JA, Plattner RD et al (1988) Ergopeptine alkaloids in grazed tall fescue. Agron J 80:209–212

    CAS  Google Scholar 

  • Brown ASS, Simmonds MSJ, Blaney WM (2002) Relationship between nutritional composition of plant species and infestation levels of thrips. J Chem Ecol 28:2399–2409. doi:10.1023/A:1021471732625

    PubMed  CAS  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    PubMed  CAS  Google Scholar 

  • Cao M, Koulman A, Johnson LJ et al (2008) Advanced data-mining strategies for the analysis of direct-infusion ion trap mass spectrometry data from the association of perennial ryegrass with its endophytic fungus, Neotyphodium lolii. Plant Physiol 146:1501–1514. doi:10.1104/pp.107.112458

    PubMed  CAS  Google Scholar 

  • Cheplick GP (2004) Recovery from drought stress in Lolium perenne (Poaceae): are fungal endophytes detrimental? Am J Bot 91:1960–1968. doi:10.3732/ajb.91.12.1960

    Google Scholar 

  • Cheplick GP (2007) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 60:202–210. doi:10.1016/j.envexpbot.2006.10.001

    Google Scholar 

  • Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111:89–97. doi:10.1111/j.1469-8137.1989.tb04222.x

    Google Scholar 

  • Cheplick GP, Perera A, Koulouris K (2000) Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct Ecol 14:657–667. doi:10.1046/j.1365-2435.2000.00466.x

    Google Scholar 

  • Christensen MJ, Leuchtmann A, Rowan DD et al (1993) Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (Festuca pratensis) and perennial ryegrass (Lolium perenne). Mycol Res 97:1083–1092. doi:10.1016/S0953-7562(09)80509-1

    Google Scholar 

  • Christensen MJ, Bennett RJ, Ansari HA et al (2008) Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93. doi:10.1016/j.fgb.2007.07.013

    PubMed  Google Scholar 

  • Clark JIM, Hall JL (1998) Solute transport into healthy and powdery mildew-infected leaves of pea and uptake by powdery mildew mycelium. New Phytol 140:261–269. doi:10.1046/j.1469-8137.1998.00263.x

    CAS  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127. doi:10.1086/342161

    PubMed  Google Scholar 

  • de Jesus AE, Gorst-Allman CP, Steyn PS et al (1983) Tremorgenic mycotoxins from Penicillium crustosum. Biosynthesis of penitrem A. J Chem Soc Perk T 1:1863–1868

    Google Scholar 

  • Doehlemann G, Wahl R, Horst RJ et al (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:181–195. doi:10.1111/j.1365-313X.2008.03590.x

    PubMed  CAS  Google Scholar 

  • Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Carbon partitioning, cost and metabolism of arbuscular mycorrhizae in arbuscular mycorrhizas: physiology and function. In: Kapulnick Y, Douds DD Jr (eds) Arbuscular mycorrhizas: molecular biology and physiology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Douglas AE (2006) Phloem-sap feeding by animals: problems and solutions. J Exp Bot 57:747–754. doi:10.1093/jxb/erj067

    PubMed  CAS  Google Scholar 

  • Douglas AE, Price DRG, Minto LB et al (2006) Sweet problems: insect traits defining the limits to dietary sugar utilization by the pea aphid, Acyrthosiphon pisum. J Exp Bot 209:1395–1403

    CAS  Google Scholar 

  • Easton HS, Latch GCM, Tapper BA et al (2002) Ryegrass host genetic control of concentrations of endophyte-derived alkaloids. Crop Sci 42:51–57

    PubMed  CAS  Google Scholar 

  • Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325. doi:10.1086/345937

    PubMed  Google Scholar 

  • Faeth SH, Hamilton CE (2006) Does an asexual endophyte symbiont alter life stage and long-term survival in a perennial host grass? Microb Ecol 52:748–755. doi:10.1007/s00248-006-9123-z

    PubMed  Google Scholar 

  • Fletcher LR, Easton HS (1997) The evaluation of use of endophytes for pasture improvement. In: Bacon CW, Hill NS (eds) Proceedings of the 3rd international symposium on Neotyphodium/grass interactions. Plenum Press, New York, p 209

    Google Scholar 

  • Gallagher RT, Hawkes AD, Steyn PS et al (1984) Tremorgenic neurotoxins from perennial ryegrass causing ryegrass staggers disorder of livestock - Structure elucidation of Lolitrem-B. J Chem Soc Chem Commun 61:4–616

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. doi:10.1038/nature03610

    PubMed  CAS  Google Scholar 

  • Graham JH (2000) Assessing costs of arbuscular mycorrhizal symbiosis agroecosystems fungi. In: Podila GK, Douds DD Jr (eds) Current advances in Mycorrhizae research. APS Press, St. Paul

    Google Scholar 

  • Hahn M, Mendgen K (2001) Signal and nutrient exchange at biotrophic plant-fungus interfaces. Curr Opin Plant Biol 4:322–327. doi:10.1016/S1369-5266(00)00180-1

    PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2000) Assimilate transport and partitioning in fungal biotrophic interactions. Aust J Plant Physiol 27:549–560

    CAS  Google Scholar 

  • Hall JL, Aked J, Gregory AJ (1992) Carbon metabolism and transport in a biotrophic fungal association. In: Pollock CJ, Farrar JF, Gordon AJ et al (eds) Carbon partitioning within and between organisms. Bios Scientific Publishers, Oxford, pp 181–198

    Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe Interact 6:643–654

    CAS  Google Scholar 

  • Harwood VD (1954) Analytical studies on the carbohydrates of grasses and clover. VII. The isolation of d-mannitol from perennial ryegrass (Lolium perenne L.). J Sci Food Agric 5:453–455. doi:10.1002/jsfa.2740050911

    CAS  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503. doi:10.1146/annurev.arplant.50.1.473

    PubMed  CAS  Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L et al (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415. doi:10.1111/j.1365-2494.2003.00393.x

    Google Scholar 

  • Hesse U, Hahn H, Andreeva K, Förster K et al (2004) Investigations on the influence of Neotyphodium endophytes on plant growth and seed yield of Lolium perenne genotypes. Crop Sci 44:1689–1695

    Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L et al (2005) Influence of water supply and endophyte infection (Neotyphodium spp.) on vegetative and reproductive growth of two Lolium perenne L. genotypes. Eur J Agron 22:45–54. doi:10.1016/j.eja.2003.12.002

    Google Scholar 

  • Hinton DM, Bacon CW (1985) The distribution and ultrastructure of the endophyte of toxic tall fescue. Can J Bot 63:36–42

    Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A et al (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301. doi:10.1104/pp.104.056572

    PubMed  CAS  Google Scholar 

  • Hume DE, Barker DJ (2005) Growth and management of endophytic grasses in pastoral agriculture. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses. Blackwell Publishing Professional, Iowa

    Google Scholar 

  • Hunt MG, Rasmussen S, Newton PCD et al (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on perennial ryegrass: growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354. doi:10.1111/j.1365-3040.2005.01367.x

    CAS  Google Scholar 

  • Keogh RG (1983) Ryegrass staggers: management and control. In: Proceedings of the NZ Grassland Association, vol. 44. Blenheim, p 248

  • Krauss J, Harri SA, Bush L et al (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Funct Ecol 21:107–116. doi:10.1111/j.1365-2435.2006.01216.x

    Google Scholar 

  • Kuldau GA, Tsai HF, Schardl CL (1999) Genome sizes of Epichloë species and anamorphic hybrids. Mycologia 91:776–782. doi:10.2307/3761531

    CAS  Google Scholar 

  • Lam H-M, Coschigano KT, Oliveira IC et al (1996) The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol 47:569–593. doi:10.1146/annurev.arplant.47.1.569

    CAS  Google Scholar 

  • Lane GA, Tapper BA, Davies E (1997) Effect of growth conditions on alkaloid concentrations in perennial ryegrass naturally infected with endophyte. In: Bacon CW, Hill AC et al (eds) Proceedings of the 3rd international symposium on Neotyphodium/grass interactions. Plenum Press, New York, p 179

    Google Scholar 

  • Lane GA, Christensen MJ, Miles CO (2000) Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 341–388

    Google Scholar 

  • Leuchtmann A (1993) Systematics, distribution, and host specificity of grass endophytes. Nat Toxins 1:150–162. doi:10.1002/nt.2620010303

    Google Scholar 

  • Lewis DH, Smith DC (1967) Sugar alcohols (polyols) in fungi and green plants. New Phytol 66:143–184. doi:10.1111/j.1469-8137.1967.tb05997.x

    CAS  Google Scholar 

  • Lyons PC, Bacon CW (1984) Ergot alkaloids in tall fescue infected with Sphacelia typhina. Phytopathology 75:501

    Google Scholar 

  • Lyons PC, Plattner RD, Bacon CW (1986) Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science 232:487–489. doi:10.1126/science.3008328

    PubMed  CAS  Google Scholar 

  • Lyons PC, Evans JJ, Bacon CW (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol 92:726–732. doi:10.1104/pp.92.3.726

    PubMed  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998a) Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12. doi:10.1023/A:1004331932018

    CAS  Google Scholar 

  • Malinowski DP, Belesky DP, Hill NS et al (1998b) Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea Schreb.). Plant Soil 198:53–61. doi:10.1023/A:1004279401196

    CAS  Google Scholar 

  • Mannhaupt G, Montrone C, Haase D et al (2003) What’s in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res 31:1944–1954. doi:10.1093/nar/gkg293

    PubMed  CAS  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM et al (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354. doi:10.1073/pnas.0406163101

    PubMed  CAS  Google Scholar 

  • Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456. doi:10.1016/j.pbi.2005.05.007

    PubMed  Google Scholar 

  • Panaccione DG, Tapper BA, Lane GA et al (2003) Biochemical outcome of blocking the ergot alkaloid pathway of a grass endophyte. J Agric Food Chem 51:6429–6437. doi:10.1021/jf0346859

    PubMed  CAS  Google Scholar 

  • Parsons AJ, Harvey A, Woledge J (1991) Plant/animal interactions in continuously grazed mixtures. I. Differences in the physiology of leaf expansion and the fate of leaves of grasses and clover. J Appl Ecol 28:619–634. doi:10.2307/2404572

    Google Scholar 

  • Parsons AJ, Rasmussen S, Xue H et al (2004) Some ‘high sugar grasses’ don’t like it hot. Proc NZGA 66:265–272

    Google Scholar 

  • Pavis N, Chatterton NJ, Harrison PA et al (2001) Structure of fructans in roots and leaf tissues of Lolium perenne. New Phytol 150:83–95. doi:10.1046/j.1469-8137.2001.00069.x

    CAS  Google Scholar 

  • Pfeffer PE, Douds DD, Bécard G et al (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598. doi:10.1104/pp.120.2.587

    PubMed  CAS  Google Scholar 

  • Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553. doi:10.1046/j.1469-8137.2001.00139.x

    CAS  Google Scholar 

  • Pollock CJ, Jones T (1979) Seasonal patterns of fructan metabolism in forage grasses. New Phytol 83:9–15. doi:10.1111/j.1469-8137.1979.tb00720.x

    CAS  Google Scholar 

  • Rasmussen S, Parsons AJ, Bassett S et al (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797. doi:10.1111/j.1469-8137.2006.01960.x

    PubMed  CAS  Google Scholar 

  • Rasmussen S, Parsons AJ, Popay A et al (2008a) Plant-endophyte herbivore interactions: more than just alkaloids? Plant Signal Behav 3:1–4

    Google Scholar 

  • Rasmussen S, Parsons AJ, Xue H et al (2008b) Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol 146:1440–1453. doi:10.1104/pp.107.111898

    PubMed  CAS  Google Scholar 

  • Richardson MD, Chapman GW Jr, Hoveland CS et al (1992) Sugar alcohols in endophyte-infected tall fescue under drought. Crop Sci 32:1060–1061

    CAS  Google Scholar 

  • Rowan DD (1993) Lolitrems, peramine and paxilline: mycotoxins of the ryegrass/endophyte interaction. Agric Ecosyst Environ 44:103–122. doi:10.1016/0167-8809(93)90041-M

    CAS  Google Scholar 

  • Rowan DD, Latch GCM (1994) Utilization of endophyte-infected perennial ryegrasses for increased insect resistance. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi in grasses. CRC Press, Boca Raton

    Google Scholar 

  • Rowan DD, Hunt MB, Gaynor DL (1986) Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. J Chem Soc Chem Commun 1986:935–936. doi:10.1039/c39860000935

    Google Scholar 

  • Saikia S, Nicholson MJ, Young C (2008) The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res 112:184–199. doi:10.1016/j.mycres.2007.06.015

    PubMed  CAS  Google Scholar 

  • Saikkonen K, Wäli P, Helander M et al (2004) Evolution of endophyte-plant symbiosis. Trends Plant Sci 9:275–280. doi:10.1016/j.tplants.2004.04.005

    PubMed  CAS  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M et al (2007) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433. doi:10.1016/j.tplants.2006.07.001

    Google Scholar 

  • Salminen SO, Grewal PS (2002) Does decreased mowing frequency enhance alkaloid production in endophytic tall fescue and perennial ryegrass? J Chem Ecol 28:939–950. doi:10.1023/A:1015201616013

    PubMed  CAS  Google Scholar 

  • Sarosh BR, Sivaramakrishnan S, Shetty HS (2005) Elicitation of defense related enzymes and resistance by l-methionine in pearl millet against downy mildew disease caused by Sclerospora graminicola. Plant Physiol Biochem 43:808–815. doi:10.1016/j.plaphy.2005.06.009

    PubMed  CAS  Google Scholar 

  • Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82. doi:10.1006/fgbi.2001.1275

    PubMed  CAS  Google Scholar 

  • Schardl C, Leuchtmann LA, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340. doi:10.1146/annurev.arplant.55.031903.141735

    PubMed  CAS  Google Scholar 

  • Schardl C, Grossman RB, Nagabhyru P et al (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996. doi:10.1016/j.phytochem.2007.01.010

    PubMed  CAS  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146. doi:10.1016/j.phytochem.2007.06.032

    PubMed  CAS  Google Scholar 

  • Seto Y, Takahashi K, Matsuurai H et al (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloë typhina. Biosci Biotechnol Biochem 71:1470–1475. doi:10.1271/bbb.60700

    PubMed  CAS  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D et al (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:2979–29995

    Google Scholar 

  • Siegel MR, Latch GCM, Bush LP et al (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3315. doi:10.1007/BF00982100

    CAS  Google Scholar 

  • Singh SB, Bais BS, Singh DR (1972) Effect of different carbon and nitrogen sources on growth and sporulation of Claviceps microcephala (Wallr.) Tul. Mycopathol Mycol Appl 46:373–378. doi:10.1007/BF02052134

    PubMed  CAS  Google Scholar 

  • Solaiman MDZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538. doi:10.1046/j.1469-8137.1997.00757.x

    CAS  Google Scholar 

  • Spiering MJ, Lane GA, Christensen MJ et al (2005) Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 66:195–202. doi:10.1016/j.phytochem.2004.11.021

    PubMed  CAS  Google Scholar 

  • Springer JP, Clardy J (1980) Paspaline and paspalicine, two indole-mevalonate metabolites from Claviceps paspali. Tetrahedron Lett 21:231–234. doi:10.1016/S0040-4039(00)71176-2

    CAS  Google Scholar 

  • Springer JP, Clardy J, Wells JM et al (1975) The structure of paxilline, a tremorgenic metabolite of Penicillium paxilli Bainier. Tetrahedron Lett 30:2531–2534. doi:10.1016/S0040-4039(00)75170-7

    Google Scholar 

  • Stewart AV (1986) Effect on the Lolium endophyte of nitrogen applied to perennial ryegrass seed crops. NZ J Exp Agr 14:393–397

    Google Scholar 

  • Strickland JR, Bailey EM, Abney LK et al (1996) Assessment of the mitogenic potential of the alkaloids produced by endophyte (Acremonium coenophialum)-infected tall fescue (Festuca arundinacea) on bovine vascular smooth muscle in vitro. J Anim Sci 74:1664–1671

    PubMed  CAS  Google Scholar 

  • Strobel GA, Hess WM (1997) Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity. Chem Biol 4:529–536. doi:10.1016/S1074-5521(97)90325-2

    PubMed  CAS  Google Scholar 

  • Stryer L (2000) In Biochemistry, 4th edition, 9th printing, W.H.Freeman and Company, New York, p. 718

  • Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076. doi:10.1016/j.fgb.2007.04.011

    PubMed  CAS  Google Scholar 

  • Tanaka A, Tapper BA, Popay A et al (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050. doi:10.1111/j.1365-2958.2005.04747.x

    PubMed  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D et al (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic association. Plant Cell 18:1052–1066. doi:10.1105/tpc.105.039263

    PubMed  CAS  Google Scholar 

  • Tanaka A, Takemoto D, Hyon G-S et al (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 68:1165–1178. doi:10.1111/j.1365-2958.2008.06217.x

    PubMed  CAS  Google Scholar 

  • Tapper BA, Lane GA (2004) Janthitrems found in a Neotyphodium endophyte of perennial ryegrass. In: Kallenbach R, Rosenkranz CJ, Lock TR (eds) 5th International Symposium on Neotyphodium/Grass interactions, Fayetteville

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403. doi:10.1016/j.pbi.2005.05.014

    PubMed  CAS  Google Scholar 

  • Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593–605. doi:10.1007/s002530100801

    PubMed  CAS  Google Scholar 

  • Volpin H, Elkind Y, Okon Y et al (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol 104:683–689

    PubMed  CAS  Google Scholar 

  • Wang J, Machado C, Panaccione DG et al (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198. doi:10.1016/j.fgb.2003.10.002

    PubMed  CAS  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891. doi:10.1046/j.1365-3040.1998.00351.x

    Google Scholar 

  • Young CA, Bryant MK, Christensen MJ et al (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Genet Genomics 274:13–29. doi:10.1007/s00438-005-1130-0

    PubMed  CAS  Google Scholar 

  • Young CA, Felitti S, Shields K et al (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693. doi:10.1016/j.fgb.2006.04.004

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. C. Voisey and Mr. M. Christensen (AgResearch Grasslands, Palmerston North, NZ), and Prof. H. Koga (Ishikawa Prefectural University, Ishikawa, Japan) for providing us with the original micrographs shown in Fig. 1a, b. This review is based partially on work funded by the New Zealand Foundation for Research, Science and Technology (contracts C10X0203 and PRJ10333-ECOS-AGR), and by grants from the Canadian Natural Sciences and Engineering Research Council and the Ontario Ministry of Agriculture, Food and Rural Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, S., Parsons, A.J. & Newman, J.A. Metabolomics analysis of the Lolium perenneNeotyphodium lolii symbiosis: more than just alkaloids?. Phytochem Rev 8, 535–550 (2009). https://doi.org/10.1007/s11101-009-9136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9136-6

Keywords

Navigation