Skip to main content
Log in

Local Adaptation in Festuca arizonica Infected by Hybrid and Nonhybrid Neotyphodium Endophytes

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Cool-season grasses often harbor obligate fungal symbionts from the genus Neotyphodium, and these symbiota can function as a single ecological unit. Previous studies have shown that gene flow in Neotyphodium in Festuca arizonica is low enough such that populations could diverge and form local adaptations. A reciprocal transplant experiment was performed between two F. arizonica/Neotyphodium populations in Arizona, Clint’s Well and Flagstaff, using symbiota with the most common Neotyphodium genotypes in each population, to test for local adaptations. The genetic difference between populations is potentially large as Neotyphodium from Clint’s Well are of hybrid origin. Local environmental variation was the most important source of variation for F. arizonica/Neotyphodium symbiota growth, with individuals at Flagstaff growing larger and individuals at Clint’s Well not reproducing. Local environment and the source population of the symbiota interacted to affect vegetative growth. Symbiota from Clint’s Well, which harbor hybrid Neotyphodium, had higher volume/wet mass and volume/dry mass ratios but only in the marginal Clint’s Well habitat. The local environment also affected F. arizonica/Neotyphodium reproduction because only symbiota transplanted to Flagstaff reproduced. Symbiota from Clint’s Well produced more panicles, whereas symbiota from Flagstaff with nonhybrid Neotyphodium produced greater seed mass per panicle. Overall seed mass production was not different, suggesting that the two strategies are functionally equivalent. We find that F. arizonica/Neotyphodium symbiota vary geographically, but potential local adaptations are only apparent in marginal habitats and may be related to the evolutionary history of the Neotyphodium part of the symbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  2. Gandon S (1998) Local adaptation and host–parasite interactions. Trends Ecol Evol 13:214–216

    Article  Google Scholar 

  3. Gandon S (2002) Local adaptation and the geometry of host–parasite coevolution. Ecol Lett 5:246–256

    Article  Google Scholar 

  4. Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I (1996) Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc R Soc Lond B Biol Sci 263:1003–1009

    Article  Google Scholar 

  5. Nuismer SL, Thompson JN, Gomulkiewicz R (1999) Gene flow and geographically structured coevolution. Proc R Soc Lond B Biol Sci 266:605–609

    Article  Google Scholar 

  6. Nuismer SL, Thompson JN, Gomulkiewicz R (2000) Coevolutionary clines across selection mosaics. Evolution 54:1102–1115

    PubMed  CAS  Google Scholar 

  7. Parker MA (1995) Plant fitness variation caused by different mutualist genotypes. Ecology 76:1525–1535

    Article  Google Scholar 

  8. Wilkinson HH, Parker MA (1996) Symbiotic specialization and the potential for genotypic coexistence in a plant–bacterial mutualism. Oecologia 108:361–367

    Google Scholar 

  9. Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  PubMed  CAS  Google Scholar 

  10. Douglas AE, Smith DC (1983) The cost of symbionts to their host in green hydra. In: Schenk HEA, Schwemmler W (eds) Endocytobiology II. Walter de Gruyter, Berlin, pp 631–648

    Google Scholar 

  11. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  12. Cushman JH, Whitham TG (1989) Conditional mutualism in a membracid ant association - temporal, age-specific, and density-dependent effects. Ecology 70:1040–1047

    Article  Google Scholar 

  13. Pellmyr O, Huth CJ (1994) Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–260

    Article  CAS  Google Scholar 

  14. Burdon JJ, Thrall PH (1999) Spatial and temporal patterns in coevolving plant and pathogen associations. Am Nat 153:S15–S33

    Article  Google Scholar 

  15. Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass–fungal endophyte symbioses. Plant Physiol 114:1–7

    PubMed  CAS  Google Scholar 

  16. Faeth SH (2002) Are endophytic fungi defensive plant mutualists? Oikos 98:25–36

    Article  Google Scholar 

  17. Elbersen HW, West CP (1996) Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass Forage Sci 51:333–342

    Article  Google Scholar 

  18. Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67

    Article  Google Scholar 

  19. Hill NS, Pachon JG, Bacon CW (1996) Acremonium coenophialum mediated short- and long-term drought acclimation in tall fescue. Crop Sci 36:665–672

    Article  Google Scholar 

  20. Malinowski D, Leuchtmann A, Schmidt D, Nosberger J (1997) Growth and water status in meadow fescue is affected by Neotyphodium and Phialophora species endophytes. Agron J 89:673–678

    Article  Google Scholar 

  21. Vila-Aiub MM, Martinez-Ghersa MA, Ghersa CM (2003) Evolution of herbicide resistance in weeds: vertically transmitted fungal endophytes as genetic entities. Evol Ecol 17:441–456

    Article  Google Scholar 

  22. Zabalgogeazcoa I, Ciudad AG, de Aldana BR, Criado BG (2006) Effects of the infection by the fungal endophyte Epichloe festucae in the growth and nutrient content of Festuca rubra. Eur J Agron 24:374–384

    CAS  Google Scholar 

  23. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  24. Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the Tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90

    Article  Google Scholar 

  25. Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte–grass literature. Trends Plant Sci 11:428–433

    Article  PubMed  CAS  Google Scholar 

  26. Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111:89–97

    Article  Google Scholar 

  27. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu. Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  28. Bultman TL, Bell G, Martin WD (2004) A fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology 85:679–685

    Article  Google Scholar 

  29. Lehtonen P, Helander M, Wink M, Sporer F, Saikkonen K (2005) Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecol Lett 8:1256–1263

    Article  Google Scholar 

  30. Cheplick GP (1998) Genotypic variation in the regrowth of Lolium perenne following clipping: effects of nutrients and endophytic fungi. Funct Ecol 12:176–184

    Article  Google Scholar 

  31. Faeth SH, Bush LP, Sullivan TJ (2002) Peramine alkaloid variation in Neotyphodium-infected Arizona fescue: effects of endophyte and host genotype and environment. J Chem Ecol 28:1511–1526

    Article  PubMed  CAS  Google Scholar 

  32. Faeth SH, Sullivan TJ (2003) Mutualistic, asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325

    Article  PubMed  Google Scholar 

  33. Brem D, Leuchtmann A (2001) Epichloe grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia 126:522–530

    Article  Google Scholar 

  34. Tintjer T, Rudgers JA (2006) Grass–herbivore interactions altered by strains of a native endophyte. New Phytol 170:513–521

    Article  PubMed  Google Scholar 

  35. Faeth SH, Gardner DR, Hayes CJ, Jani A, Wittlinger SK, Jones TA (2006) Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium. J Chem Ecol 32:307–324

    Article  PubMed  CAS  Google Scholar 

  36. Brem D, Leuchtmann A (2003) Molecular evidence for host-adapted races of the fungal endophyte Epichloe bromicola after presumed host shifts. Evolution 57:37–51

    PubMed  CAS  Google Scholar 

  37. Hesse U, Schoberlein W, Wittenmayer L, Forster K, Warnstorff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415

    Article  Google Scholar 

  38. Brem D, Leuchtmann A (2002) Intraspecific competition of endophyte infected vs uninfected plants of two woodland grass species. Oikos 96:281–290

    Article  Google Scholar 

  39. Saikkonen K, Ion D, Gyllenberg M (2002) The persistence of vertically transmitted fungi in grass metapopulations. Proc R Soc Lond B Biol Sci 269:1397–1403

    Article  Google Scholar 

  40. Tsai HF, Liu JS, Staben C, Christensen MJ, Latch GCM, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci USA 91:2542–2546

    Article  PubMed  CAS  Google Scholar 

  41. Schardl CL, Leuchtmann A, Tsai HF, Collett MA, Watt DM, Scott DB (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics 136:1307–1317

    PubMed  CAS  Google Scholar 

  42. Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467

    Article  PubMed  CAS  Google Scholar 

  43. Christensen MJ, Leuchtmann A, Rowan DD, Tapper BA (1993) Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F. pratensis) and perennial ryegrass (Lolium perenne). Mycol Res 97:1083–1092

    Article  Google Scholar 

  44. Moon CD, Scott B, Schardl CL, Christensen MJ (2000) The evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia 92:1103–1118

    Article  Google Scholar 

  45. Craven KD, Blankenship JD, Leuchtmann A, Hignight K, Schardl CL (2001) Hybrid fungal endophytes symbiotic with the grass Lolium pratense. Sydowia 53:44–73

    Google Scholar 

  46. Moon CD, Miles CO, Jarlfors U, Schardl CL (2002) The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 94:694–711

    Article  CAS  Google Scholar 

  47. Sullivan TJ, Faeth SH (2004) Gene flow in the endophyte Neotyphodium and implications for coevolution with Festuca arizonica. Mol Ecol 13:649–656

    Article  PubMed  CAS  Google Scholar 

  48. Selosse MA, Schardl CL (2007) Fungal endophytes of grasses: hybrids rescued by vertical transmission? An evolutionary perspective. New Phytol 173:452–458

    Article  PubMed  Google Scholar 

  49. Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  50. Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873

    Article  PubMed  CAS  Google Scholar 

  51. Kearney TH, Peebles RH (1960) Arizona Flora. University of California Press, Berkeley, CA

    Google Scholar 

  52. Schulthess FM, Faeth SH (1998) Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia 90:569–578

    Article  Google Scholar 

  53. Saikkonen K, Helander M, Faeth SH, Schulthess F, Wilson D (1999) Endophyte–grass–herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia 121:411–420

    Article  Google Scholar 

  54. Lopez JE, Faeth SH, Miller M (1995) Effect of endophytic fungi on herbivory by redlegged grasshoppers (Orthoptera: Acrididae) on Arizona fescue. Environ Entomol 24:1576–1580

    Google Scholar 

  55. Tibbets TM, Faeth SH (1999) Neotyphodium endophytes in grasses: deterrents or promoters of herbivory by leaf-cutting ants? Oecologia 118:297–305

    Article  Google Scholar 

  56. An ZQ, Liu JS, Siegel MR, Bunge G, Schardl CL (1992) Diversity and origins of endophytic fungal symbionts of the North American grass Festuca arizonica. Theor Appl Genet 85:366–371

    Article  CAS  Google Scholar 

  57. Cabral D, Cafaro MJ, Saidman B, Lugo M, Reddy PV, White JF (1999) Evidence supporting the occurrence of a new species of endophyte in some South American grasses. Mycologia 91:315–325

    Article  Google Scholar 

  58. White JF, Cole GT, Morganjones G (1987) Endophyte-host associations in forage grasses. VI. A new species of Acremonium isolated from Festuca arizonica. Mycologia 79:148–152

    Article  Google Scholar 

  59. US Department of Agriculture (1967) General soil map—Coconino county, Arizona. US Department of Agriculture—Soil Conservation Service, Washington, DC

    Google Scholar 

  60. Moore KJ, Moser LE (1995) Quantifying developmental morphology of perennial grasses. Crop Sci 35:37–43

    Article  Google Scholar 

  61. Siegel MR, Bush LP (1996) Defensive chemicals in grass-fungal endophyte associations. In: Romero JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions, vol. 30. Plenum, New York, pp 81–117

    Google Scholar 

  62. SAS Institute (2003) JMP IN. SAS Institute, Cary, NC

    Google Scholar 

  63. Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  64. Singer JW (2002) Species and nitrogen effect on growth rate, tiller density, and botanic composition in grass hay production. Crop Sci 42:208–214

    Article  PubMed  Google Scholar 

  65. Sullivan TJ (2003) Geographic and genetic variation in the Neotyphodium/Festuca arizonica interaction. Ph.D. dissertation

Download references

Acknowledgments

The authors wish to thank Natalie Fuller and Phil Steiner for their field assistance and Dr. Thomas Dowling for his aid with the microsatellites and DNA sequencing. We also thank Andrea Jani and Tamaru Hunt-Joshi for their helpful comments on the manuscript. This research was supported by grants from the Associated Graduate Students of A.S.U. and by an anonymous donor to the ASU foundation to TJS and DEB 0128343 to SHF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, T.J., Faeth, S.H. Local Adaptation in Festuca arizonica Infected by Hybrid and Nonhybrid Neotyphodium Endophytes. Microb Ecol 55, 697–704 (2008). https://doi.org/10.1007/s00248-007-9312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9312-4

Keywords

Navigation