Skip to main content
Log in

CO in methanogenesis

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Although CO is present in methanogenic environments, an understanding of CO metabolism by methanogens has lagged behind other methanogenic substrates and investigations of CO metabolism in non-methanogenic species. This review features studies on the metabolism of CO by methanogens from 1931 to the present. The pathways for CO metabolism of freshwater versus marine species are contrasted and the ecological implications discussed. The biochemistry and role of CO dehydrogenase/acetyl-CoA synthase in the pathway for conversion of acetate to methane and biosynthesis of cell carbon is presented. Finally, a proposal for the role of CO and primitive forms of the CO dehydrogenase/acetyl-CoA synthase in the origin and early evolution of life is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbanat DR, Ferry JG (1990) Synthesis of acetyl-CoA by the carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J Bacteriol 172:7145–7150

    CAS  PubMed  Google Scholar 

  • Abbanat DR, Ferry JG (1991) Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc Natl Acad Sci USA 88:3272–3276

    Article  CAS  PubMed  Google Scholar 

  • Abbott IA, Hollenberg GJ (1976) Marine algae of California. Stanford University Press, Stanford

    Google Scholar 

  • Apolinario EE, Jackson KM, Sowers KR (2005) Development of a plasmid-mediated reporter system for in vivo monitoring of gene expression in the archaeon Methanosarcina acetivorans. Appl Environ Microbiol 71:4914–4918

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar B, DeMoll E, Grahame DA (1998) Redox-dependent acetyl transfer partial reaction of the acetyl-CoA decarbonylase/synthase complex: kinetics and mechanism. Biochemistry 37:14491–14499

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Kamagata Y (1998) Rejection of the species Methanothrix soehngenii VP and the genus Methanothrix VP as nomina confusa, and transfer of Methanothrix thermophila VP to the genus Methanosaeta VP as Methanosaeta thermophila comb. nov. Request for an opinion. Int J Syst Bacteriol 48:1079–1080

    Google Scholar 

  • Bott M, Thauer RK (1987) Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur J Biochem 168:407–412

    Article  CAS  PubMed  Google Scholar 

  • Bott MH, Eikmanns B, Thauer RK (1985) Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source. Arch Microbiol 143:266–269

    Article  CAS  Google Scholar 

  • Bott M, Eikmanns B, Thauer RK (1986) Coupling of carbon monoxide oxidation to CO 2 and H 2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur J Biochem 159:393–398

    Article  CAS  PubMed  Google Scholar 

  • Bryant MP, Boone DR (1987) Emended description of strain MST (DSM 800 T), the type strain of Methanosarcina barkeri. Int J Syst Bacteriol 37:169–170

    Google Scholar 

  • Conrad R, Seiler W (1980) Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil. Appl Environ Microbiol 40:437–445

    CAS  PubMed  Google Scholar 

  • Conrad R, Thauer RK (1983) Carbon monoxide production by Methanobacterium thermoautotrophicum. FEMS Microbiol Lett 20:229–232

    Article  CAS  Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    CAS  PubMed  Google Scholar 

  • DeMoll E, Grahame DA, Harnly JM, Tsai L, Stadtman TC (1987) Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. J Bacteriol 169:3916–3920

    CAS  PubMed  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between Bacteria and Archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • Eggen RIL, Geerling ACM, Jetten MSM, Devos WM (1991) Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J Biol Chem 266:6883–6887

    CAS  PubMed  Google Scholar 

  • Eggen RIL, Vankranenburg R, Vriesema AJM, Geerling ACM, Verhagen MFJM, Hagen WR, Devos WM (1996) Carbon monoxide dehydrogenase from Methanosarcina frisia Go1. Characterization of the enzyme and the regulated expression of two operon-like cdh gene clusters. J Biol Chem 271:14256–14263

    Article  CAS  PubMed  Google Scholar 

  • Eikmanns B, Fuchs G, Thauer RK (1985) Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum. Eur J Biochem 146:149–154

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG (2008) Acetate-based methane production. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, D.C., pp 155–170

    Google Scholar 

  • Ferry JG, House CH (2006) The stepwise evolution of early life driven by energy conservation. Mol Biol Evol 23:1286–1292

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG, Kastead KA (2007) Methanogenesis. In: Cavicchioli R (ed) Archaea: molecular cell biology. ASM Press, Washington, D.C., pp 288–314

    Google Scholar 

  • Ferry JG, Lessner DJ (2008). Methanogenesis in Marine Sediments. In: Wiegel J, Maier R, Adams MWW (eds) Incredible anaerobes: from physiology to genomics to fuels. Ann NY Acad Sci, pp 147–157

  • Fischer R, Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch Microbiol 151:459–465

    Article  CAS  Google Scholar 

  • Fischer R, Thauer RK (1990) Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett 269:368–372

    Article  CAS  PubMed  Google Scholar 

  • Fischer F, Lieske R, Winzer K (1931) Biologische gasreaktionen. I. Mitteilung: die umsetzung des kohlenoxyds. Biochem Z 236:247–267

    CAS  Google Scholar 

  • Fischer F, Lieske R, Winzer K (1932) Uber die bildung von essigsaure bei der biologischen umsetzung von kohlenoxyd und kohlensaure mit wasserstoff zu methan. Biochem Z 245:2–12

    Google Scholar 

  • Fuchs G, Stupperich E (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum. Arch Microbiol 127:267–272

    Article  CAS  Google Scholar 

  • Funk T, Gu WW, Friedrich S, Wang HX, Gencic S, Grahame DA, Cramer SP (2004) Chemically distinct Ni sites in the A-cluster in subunit beta of the Acetyl-CoA decarbonylase/synthase complex from Methanosarcina thermophila: Ni L-edge absorption and x-ray magnetic circular dichroism analyses. J Am Chem Soc 126:88–95

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  CAS  PubMed  Google Scholar 

  • Gencic S, Grahame DA (2003) Nickel in subunit b of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens. J Biol Chem 278:6101–6110

    Article  CAS  PubMed  Google Scholar 

  • Gencic S, Grahame DA (2008) Two separate one-electron steps in the reductive activation of the A cluster in subunit beta of the ACDS complex in Methanosarcina thermophila. Biochemistry 47:5544–5455

    Article  CAS  PubMed  Google Scholar 

  • Gokhale JU, Aldrich HC, Bhatnagar L, Zeikus JG (1993) Localization of carbon monoxide dehydrogenase in acetate- adapted Methanosarcina barkeri. Can J Microbiol 39:223–226

    Article  CAS  Google Scholar 

  • Gong W, Hao B, Wei Z, Ferguson DJ Jr, Tallant T, Krzycki JA, Chan MK (2008) Structure of the a2e2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc Natl Acad Sci USA 105:9558–9563

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk G, Thauer RK (2001) The Na+ translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36

    Article  CAS  PubMed  Google Scholar 

  • Grahame DA (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem 266:22227–22233

    CAS  PubMed  Google Scholar 

  • Grahame DA (1993) Substrate and cofactor reactivity of a carbon monoxide dehydrogenase corrinoid enzyme complex. Stepwise reduction of iron sulfur and corrinoid centers, the corrinoid Co2+/1+ redox midpoint potential, and overall synthesis of acetyl-CoA. Biochemistry 32:10786–10793

    Article  CAS  PubMed  Google Scholar 

  • Grahame DA, Stadtman TC (1987) Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme. J Biol Chem 262:3706–3712

    CAS  PubMed  Google Scholar 

  • Grahame DA, Demoll E (1995) Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry 34:4617–4624

    Article  CAS  PubMed  Google Scholar 

  • Grahame DA, Demoll E (1996) Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri. J Biol Chem 271:8352–8358

    Article  CAS  PubMed  Google Scholar 

  • Grahame DA, Khangulov S, Demoll E (1996) Reactivity of a paramagnetic enzyme-CO adduct in acetyl-CoA synthesis and cleavage. Biochemistry 35:593–600

    Article  CAS  PubMed  Google Scholar 

  • Grahame DA, Gencic S, Demoll E (2005) A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila. Arch Microbiol 184:1–9

    Article  CAS  Google Scholar 

  • Gu WW, Gencic S, Cramer SP, Grahame DA (2003) The A-cluster in subunit beta of the acetyl-CoA decarbonylase/synthase complex from Methanosarcina thermophila: Ni and Fe K-Edge XANES and EXAFS analyses. J Am Chem Soc 125:15343–15351

    Article  CAS  PubMed  Google Scholar 

  • Holland HD (1984) Chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, New Jersey, pp 29–59

    Google Scholar 

  • Hovey R, Lentes S, Ehrenreich A, Salmon K, Saba K, Gottschalk G et al (2005) DNA microarray analysis of Methanosarcina mazei Go1 reveals adaptation to different methanogenic substrates. Mol Genet Genomics 273:225–239

    Article  CAS  PubMed  Google Scholar 

  • Jablonski PE, Lu WP, Ragsdale SW, Ferry JG (1993) Characterization of the metal centers of the corrinoid/iron- sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J Biol Chem 268:325–329

    CAS  PubMed  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1989) Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. FEBS Lett 181:437–441

    CAS  Google Scholar 

  • Jetten MSM, Pierik AJ, Hagen WR (1991a) EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur J Biochem 202:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Jetten MSM, Hagen WR, Pierik AJ, Stams AJM, Zehnder AJB (1991b) Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur J Biochem 195:385–391

    Article  CAS  PubMed  Google Scholar 

  • Kasting JF (1990) Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere. Orig Life Evol Biosph 20:199–231

    Article  CAS  Google Scholar 

  • Kemner JM, Zeikus G (1994) Regulation and function of ferredoxin-linked versus cytochrome b-linked hydrogenase in electron transfer and energy metabolism of Methanosarcina barkeri MS. Arch Microbiol 162:26–32

    Article  CAS  Google Scholar 

  • Kharecha P, Kasting J, Siefert J (2005) A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3:53–76

    Article  CAS  Google Scholar 

  • Kluyver AJ, Schnellen CGTP (1947) On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem 14:57–70

    CAS  PubMed  Google Scholar 

  • Kocsis E, Kessel M, DeMoll E, Grahame DA (1999) Structure of the Ni/Fe-S protein subcomponent of the acetyl-CoA decarbonylase/synthase complex from Methanosarcina thermophila at 26-A resolution. J Struct Biol 128:165–174

    Article  CAS  PubMed  Google Scholar 

  • Kohler H-PE, Zehnder AJB (1984) Carbon monoxide dehydrogenase and acetate thiokinase in Methanothrix soehngenii. FEMS Microbiol Lett 21:287–292

    Article  CAS  Google Scholar 

  • Krzycki JA, Zeikus JG (1984) Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol 158:231–237

    CAS  PubMed  Google Scholar 

  • Krzycki JA, Lehman LJ, Zeikus JG (1985) Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase. J Bacteriol 163:1000–1006

    CAS  PubMed  Google Scholar 

  • Krzycki JA, Mortenson LE, Prince RC (1989) Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J Biol Chem 264:7217–7221

    CAS  PubMed  Google Scholar 

  • Lange S, Fuchs G (1985) Tetrahydromethanopterin, a coenzyme involved in autotrophic acetyl coenzyme A synthesis from 2 CO2 in Methanobacterium. FEBS Lett 181:303–307

    Article  Google Scholar 

  • Lange S, Fuchs G (1987) Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide. Eur J Biochem 163:147–154

    Article  CAS  PubMed  Google Scholar 

  • Lessner DJ, Li L, Li Q, Rejtar T, Andreev VP, Reichlen M et al (2006) An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics. Proc Natl Acad Sci USA 103:17921–17926

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188:702–710

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li Q, Rohlin L, Kim U, Salmon K, Rejtar T et al (2007) Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J Proteome Res 6:759–771

    Article  CAS  PubMed  Google Scholar 

  • Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31:403–434

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann NY Acad Sci 1125:171–189

    Article  CAS  PubMed  Google Scholar 

  • Maestrojuan GM, Boone JE, Mah RA, Menaia JAGF, Sachs MS, Boone DR (1992) Taxonomy and halotolerance of mesophilic methanosarcina strains, assignment of strains to species, and synonymy of Methanosarcina mazei and Methanosarcina frisia. Int J Syst Bacteriol 42:561–567

    Article  CAS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 358:59–85

    Article  CAS  Google Scholar 

  • Maupin-Furlow J, Ferry JG (1996a) Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. J Bacteriol 178:340–346

    CAS  PubMed  Google Scholar 

  • Maupin-Furlow JA, Ferry JG (1996b) Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila. J Bacteriol 178:6849–6856

    CAS  PubMed  Google Scholar 

  • Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542

    Article  CAS  PubMed  Google Scholar 

  • Murakami E, Ragsdale SW (2000) Evidence for intersubunit communication during acetyl-CoA cleavage by the multienzyme CO dehydrogenase/acetyl-CoA synthase complex from Methanosarcina thermophila. Evidence that the beta subunit catalyzes C-C and C-S bond cleavage. J Biol Chem 275:4699–4707

    Article  CAS  PubMed  Google Scholar 

  • Nelson MJK, Ferry JG (1984) Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methanosarcina spp. J Bacteriol 160:526–532

    CAS  PubMed  Google Scholar 

  • O'Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375

    PubMed  Google Scholar 

  • Oelgeschlager E, Rother M (2008) Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 190:257–269

    Article  PubMed  CAS  Google Scholar 

  • Oelgeschlager E, Rother M (2009) Influence of carbon monoxide on metabolite formation in Methanosarcina acetivorans. FEMS Microbiol Lett 292:254–260

    Article  PubMed  CAS  Google Scholar 

  • Pereto JG, Velasco AM, Becerra A, Lazcano A (1999) Comparative biochemistry of CO2 fixation and the evolution of autotrophy. Int Microbiol 2:3–10

    CAS  PubMed  Google Scholar 

  • Ragsdale SW (2007) Nickel and the carbon cycle. J Inorg Biochem 101:1657–1666

    Article  CAS  PubMed  Google Scholar 

  • Raybuck SA, Ramer SE, Abbanat DR, Peters JW, Orme-Johnson WH, Ferry JG, Walsh CT (1991) Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J Bacteriol 173:929–932

    CAS  PubMed  Google Scholar 

  • Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101:16929–16934

    Article  CAS  PubMed  Google Scholar 

  • Rother M, Oelgeschlager E, Metcalf WM (2007) Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans. Arch Microbiol 188:463–472

    Article  CAS  PubMed  Google Scholar 

  • Ruhlemann M, Ziegler K, Stupperich E, Fuchs G (1985) Detection of acetyl coenzyme A as an early CO2 assimilation intermediate in Methanobacterium. Arch Microbiol 141:399–406

    Article  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154:377–402

    Article  CAS  Google Scholar 

  • Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358–363

    Article  CAS  PubMed  Google Scholar 

  • Russell MJ, Hall AJ, Cairns-Smith AG, Braterman PS (1988) Submarine hot springs and the origin of life. Nature 336:117

    Article  Google Scholar 

  • Schonheit P, Moll J, Thauer RK (1980) Growth parameters (K s, mmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Article  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    CAS  PubMed  Google Scholar 

  • Sowers KR, Thai TT, Gunsalus RP (1993) Transcriptional regulation of the carbon monoxide dehydrogenase gene (cdhA) in Methanosarcina thermophila. J Biol Chem 268:23172–23178

    CAS  PubMed  Google Scholar 

  • Spanheimer R, Muller V (2008) The molecular basis of salt adaptation in Methanosarcina mazei Go1. Arch Microbiol 189:431–439

    Article  CAS  Google Scholar 

  • Stephenson M, Stickland LH (1933) Hydrogenase. The bacterial formation of methane by the reduction of one-carbon compounds by molecular hydrogen. Biochem J 27:1517–1527

    CAS  PubMed  Google Scholar 

  • Stojanowic A, Hedderich R (2004) CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor. FEMS Microbiol Lett 235:163–167

    Article  CAS  PubMed  Google Scholar 

  • Stupperich E, Fuchs G (1983) Autotrophic acetyl coenzyme A synthesis in vitro from two CO2 in Methanobacterium. FEBS Lett 156:345–348

    Article  CAS  Google Scholar 

  • Stupperich E, Hammel KE, Fuchs G, Thauer RK (1983) Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett 152:21–23

    Article  CAS  PubMed  Google Scholar 

  • Terlesky KC, Ferry JG (1988a) Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J Biol Chem 263:4075–4079

    CAS  PubMed  Google Scholar 

  • Terlesky KC, Ferry JG (1988b) Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J Biol Chem 263:4080–4082

    CAS  PubMed  Google Scholar 

  • Terlesky KC, Nelson MJK, Ferry JG (1986) Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing a corrinoid and nickel from acetate-grown Methanosarcina thermophila. J Bacteriol 168:1053–1058

    CAS  PubMed  Google Scholar 

  • Terlesky KC, Barber MJ, Aceti DJ, Ferry JG (1987) EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J Biol Chem 262:15392–15395

    CAS  PubMed  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  PubMed  Google Scholar 

  • Wachtershauser G (1988) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10:207–210

    Google Scholar 

  • Wachtershauser G (1997) The origin of life and its methodological challenge. J Theor Biol 187:483–494

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    CAS  PubMed  Google Scholar 

  • Zinder S (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman and Hall, New York, NY, pp 128–206

    Google Scholar 

  • Zinder SH, Anguish T (1992) Carbon monoxide, hydrogen, and formate metabolism during methanogenesis from acetate by thermophilic cultures of Methanosarcina and Methanothrix strains. Appl Environ Microbiol 58:3323–3329

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of J.G.F has been supported by the NIH, DOE, NSF, and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Ferry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferry, J.G. CO in methanogenesis. Ann Microbiol 60, 1–12 (2010). https://doi.org/10.1007/s13213-009-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-009-0008-5

Keywords

Navigation