Skip to main content
Log in

Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cell extracts (100,000×g) of acetate grown Methanosarcina barkeri (strain MS) catalyzed CH4 and CO2 formation from acetyl-CoA with specific activities of 50 nmol·min-1·mg protein-1. CH4 formation was found to be dependent on tetrahydromethanopterin (H4MPT) (apparent K M=4 μM), coenzyme M (H-S-CoM), and 7-mercaptoheptanoylthreonine phosphate (H-S-HTP=component B) rather than on methanofuran (MFR) and coenzyme F420 (F420). Methyl-H4MPT was identified as an intermediate. This compound accumulated when H-S-CoM and H-S-HTP were omitted from the assays. These and previous results indicate that methanogenesis from acetate proceeds via acetyl phosphate, acetyl-CoA, methyl-H4MPT, and CH3-S-CoM as intermediates. The disproportionation of formaldehyde to CO2 and CH4 was also studied. This reaction was shown to be dependent on H4MPT, MFR, F420, H-S-CoM, and H-S-HTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AcCoA:

acetyl-CoA

AcP:

acetyl phosphate

H-S-CoM:

coenzyme M=2-mercaptoethanesulfonate

CH3-S-CoM:

methyl-coenzyme M=2-(methylthio)ethanesulfonate

H-S-HTP:

N-7-mercaptoheptanoylthreonine phosphate=component B

F420 :

coenzyme F420

H4MPT:

tetrahydromethanopterin

H4SPT:

tetrahydrosarcinapterin

MFR:

methanofuran

OH-B12 :

hydroxocobalamin

DTT:

dithiothreitol

MOPS:

morpholinopropane sulfonic acid

HPLC:

high performance liquid chromatography

References

  • Beelen van P, Labro JFA, Keljens JT, Geerts WJ, Vogels GD, Laarhoven WH, Guijt W, Haasnoot CAG (1984a) Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur J Biochem 139:359–365

    Article  PubMed  Google Scholar 

  • Beelen van P, Stassen APM, Bosch JWG, Vogels GD, Guijt W, Haasnoot CAG (1984b) Elucidation of the structure of methanopterin, a coenzyme from Methanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. Eur J Biochem 138:563–571

    Article  PubMed  Google Scholar 

  • Blaut M, Gottschalk G (1982) Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch Microbiol 133:230–235

    Article  CAS  Google Scholar 

  • Bobik TA, Donnelly MI, Rinehart Jr KL, Wolfe RS (1987) Structure of a methanofuran derivative found in cell extracts of Methanosarcina barkeri. Arch Biochem Biophys 254:430–436

    Article  PubMed  CAS  Google Scholar 

  • Börner G (1988) Isolierung von vier Coenzymen der Methanogenese aus Methanobacterium thermoautotrophicum. Diploma thesis, University of Marburg

  • Bott M, Thauer RK (1987) Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur J Biochem 168:407–412

    Article  PubMed  CAS  Google Scholar 

  • Bott M, Thauer RK (1989) Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur J Biochem 179:469–472

    Article  PubMed  CAS  Google Scholar 

  • Bott M, Eikmanns B, Thauer RK (1986) Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur J Biochem 159:393–398

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bryant MP, Boone DR (1987) Emended description of strain MST (DSM 800T), the type of strain of Methanosarcina barkeri. Int J System Bacteriol 37:169–170

    Article  Google Scholar 

  • Diekert G, Fuchs G, Thauer RK (1985) Properties and function of carbon monoxide dehydrogenase from anaerobic bacteria. In: Poole RK, Dow CS (eds) Microbial gas metabolism: mechanistic, metabolic and biotechnological aspects. Academic Press, London, pp 115–130

    Google Scholar 

  • Eikmanns B, Thauer RK (1984) Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch Microbiol 138:365–370

    Article  CAS  Google Scholar 

  • Eikmanns B, Thauer RK (1985) Evidence for the involvement and role of a corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri. Arch Microbiol 142:175–179

    Article  CAS  Google Scholar 

  • Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 172: 669–677

    Article  PubMed  CAS  Google Scholar 

  • Escalante-Semerena JC, Wolfe RS (1984) Formaldehyde oxidation and methanogenesis. J Bacteriol 158:721–726

    PubMed  CAS  Google Scholar 

  • Escalante-Semerena JC, Rinehardt Jr KL, Wolfe RS (1984) Tetrahydromethanopterin, a carbon carrier in methanogenesis. J Biol Chem 259:9447–9455

    PubMed  CAS  Google Scholar 

  • Fischer R, Thauer RK (1988) Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri. Dependence of the reaction on coenzyme A. FEBS Lett 228:249–253

    Article  CAS  Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213

    Article  CAS  Google Scholar 

  • Gorris LGM, Drift van der C (1986) Methanogenic cofactors in pure cultures of methanogens in relation to substrate utilization. In: Dobourguier HC, Albagnac G, Montreuil J, Romond C, Sautière P, Guillaume J (eds) Biology of anaerobic bacteria. Elsevier Science Publishers B. V., Amsterdam, pp 144–150

    Google Scholar 

  • Grahame DA, Stadtman TC (1987) In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate. Biochem Biophys Res Commun 147:254–258

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Thauer RK (1988) Methanobacterium thermoautotrohpicum contains a soluble enzyme system that specifically catalyzes the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate with H2. FEBS Lett 234:223–227

    Article  CAS  Google Scholar 

  • Hartzell PL, Zvilius G, Escalante-Semerana JC, Donnelly MI (1985) Coenzyme F420 dependence of the methylenetetrahydro-methanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 133:884–890

    Article  PubMed  CAS  Google Scholar 

  • Heine-Dobbernack E, Schoberth SM, Sahm E (1988) Relationship of intracellular coenzyme F420 content to growth and metabolic activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl Environ Microbiol 54:454–459

    PubMed  CAS  Google Scholar 

  • Karrasch M, Bott M, Thauer RK (1989) Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch Microbiol 151:137–142

    Article  CAS  Google Scholar 

  • Keltjens JT, Vogels GD (1988) Minireview. Methanopterin and methanogenic bacteria. Bio Factors 1:95–103

    CAS  Google Scholar 

  • Keltjens JT, Caerteling GD, Vogels GD (1986) Methanopterin and tetrahydromethanopterin derivatives: isolation, synthesis, and identification by high-performance liquid chromatography. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 122. Academic Press, Inc, Orlando, pp 413–425

    Google Scholar 

  • Kobelt A, Pfaltz A, Ankel-Fuchs D, Thauer RK (1987) The L-form of N-7-mercaptoheptanoyl-O-phosphothreonine is the enantiomer active as component B in methyl-CoM reduction to methane. FEBS Lett 214:265–268

    Article  CAS  Google Scholar 

  • Krzycki JA, Lehman LJ, Zeikus JG (1985) Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methyl-reductase. J Bacteriol 163:1000–1006

    PubMed  CAS  Google Scholar 

  • Länge S, Fuchs G (1987) Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide. Eur J Biochem 163:147–154

    Article  PubMed  Google Scholar 

  • Länge S, Fuchs G (1985) Tetrahydromethanopterin, a coenzyme involved in autotrophic acetyl coenzyme A synthesis from 2 CO2 in Methanobacterium. FEBS Lett 181:303–307

    Article  Google Scholar 

  • Laufer K, Eikmanns B, Frimmer U, Thauer RK (1987) Methanogenesis from acetate by Methanosarcina barkeri: catalysis of acetate formation from methyl iodide, CO2, and H2 by the enzyme system involved. Z Naturforsch 42c:360–372

    Google Scholar 

  • Leigh JA, Rinehart Jr KL, Wolfe RS (1984) Structure of methanofuran, the carbon dioxide reduction factor of Methanobacterium thermoautotrophicum. J Am Chem Soc 106:3636–3640

    Article  CAS  Google Scholar 

  • Ljungdahl LG (1986) The autrotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450

    Article  PubMed  CAS  Google Scholar 

  • Lovely DR, White RF, Ferry JG (1984) Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp. J Bacteriol 160:521–525

    Google Scholar 

  • Van der Meijden P, Heythuysen HJ, Pouwels A, Houwen F, van der Drift C, Vogels GD (1983) Methyltransferases involved in methanol conversion by Methanosarcina barkeri. Arch Microbiol 134:238–242

    Article  PubMed  Google Scholar 

  • Nelson MJK, Ferry JG (1984) Carbon monoxide dependent methyl coenzyme M methylreductase in acetotrophic Methanosarcina spp. J Bacteriol 160:526–532

    PubMed  CAS  Google Scholar 

  • Peinemann S, Müller V, Blaut M, Gottschalk G (1988) Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J Bacteriol 170:1369–1372

    PubMed  CAS  Google Scholar 

  • Pine MJ, Barker HA (1956) Studies on the methane fermentation. XII. The pathway of hydrogen in the acetate fermentation. J Bacteriol 71:644–648

    PubMed  CAS  Google Scholar 

  • Poirot CM, Kengen SWM, Valk E, Keltjens JT, van der Drift C, Vogels GD (1987) Formation of methylcoenzyme M from formaldehyde by cell-free extracts of Methanobacterium thermoautotrophicum. Evidence for the involvement of a corrinoid-containing methyltransferase. FEMS Microbiol Lett 40:7–13

    Article  CAS  Google Scholar 

  • Rouvière PE, Wolfe RS (1988) Novel biochemistry of methanogenesis. J Biol Chem 263:7913–7915

    PubMed  Google Scholar 

  • Sauer FD (1986) Tetrahydromethanopterin methyltransferase, a component of the methane synthesizing complex of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 136:542–547

    Article  PubMed  CAS  Google Scholar 

  • Schönheit P, Keweloh H, Thauer RK (1981) Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett 12:347–349

    Article  Google Scholar 

  • Terlesky KC, Barber MJ, Aceti DJ, Ferry JG (1987) EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. J Biol Chem 262:15392–15395

    PubMed  CAS  Google Scholar 

  • Terlesky KC, Nelson MJK, Ferry JG (1986) Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J Bacteriol 168:1053–1058

    PubMed  CAS  Google Scholar 

  • White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597

    PubMed  CAS  Google Scholar 

  • Van de Wijngaard WMH, van der Drift C, Vogels GD (1988) Involvement of a corrinoid enzyme in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol Lett 52:165–172

    Article  Google Scholar 

  • Wolf A (1988) O2-induzierte Interkonversion von Coenzym F420 zu F390 in methanogenen Bakterien: Untersuchungen zum Auslösemechanismus. Diploma thesis, University of Marburg

  • Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway: a newly discovered pathway of autotrophic growth. Trends in Biochemical Sciences II:14–18

    Article  Google Scholar 

  • Zeikus JG (1983) Metabolism of one-carbon compounds by chemotrophic anaerobes. Adv Microb Physiol 24:215–293

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, R., Thauer, R.K. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri . Arch. Microbiol. 151, 459–465 (1989). https://doi.org/10.1007/BF00416607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00416607

Key words

Navigation