Skip to main content
Log in

Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

To present a more physiologically relevant microenvironment for cells, hydrogel-based threedimensional culture platforms have been widely adopted. As noted by multiple pioneering reports, the neural cells are sensitive with the change of mechanical properties of the microenvironment. Therefore, in the context of brain tissue engineering and brain-on-a-chip, there is a need to consider the brain-tissue-specific mechanical properties of hydrogels. In this review, we overview the influence the mechanical properties of hydrogel on the behavior of brain tissue cells. For this purpose, in addition to the stiffness, the viscoelasticity and degradability of hydrogels are considered to be mechanical cues, and we summarize how those mechanical properties can affect cell behavior, such as viability, proliferation, differentiation, and spreading. Consideration of the brain tissue-specific mechanical microenvironment may guide the design of 3D cell culture platforms for brain tissue engineering and brain- on-a-chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252–4 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. J. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay Drug Dev. Technol. 12, 207–218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jo, R. et al. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking In Vitro Models in Anti-Cancer Drug Development. Theranostics 8, 5259–5275 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., Solomon, F. D. P. 3D Cell Culture Systems: Advantages and Applications: a Review. J. Cell. Physiol. 230, 16–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Caliari, S. R., Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tibbitt, M. W., Anseth, K. S. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duval, K. et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda). 32, 266–277 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, B. Y., Korolj, A., Lai, B. F. L., Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3, 257–278 (2018).

    Article  Google Scholar 

  9. Verhulsel, M. et al. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35, 1816–1832 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Ronaldson-Bouchard, K., Vunjak-Novakovic, G. Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell 22, 310–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, S. H. et al. Anisotropically organized threedimensional culture platform for reconstruction of a hippocampal neural network. Nat. Commun. 8, 14346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lo, C. M., Wang, H. B., Dembo, M., Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, H. B., Dembo, M., Wang, Y. L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol.-Cell Physiol. 279, C1345-C1350 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Solon, J., Levental, I., Sengupta, K., Georges, P. C., Janmey, P. A. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93, 4453–4461 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flanagan, L. A., Ju, Y. E., Marg, B., Osterfield, M., Janmey, P. A. Neurite branching on deformable substrates. Neuroreport 13, 2411–2415 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gunn, J. W., Turner, S. D., Mann, B. K. Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res., Part A 72, 91–97 (2005).

    Article  CAS  Google Scholar 

  17. Georges, P. C., Miller, W. J., Meaney, D. F., Sawyer, E. S., Janmey, P. A. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90, 3012–3018 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aurand, E. R., Wagner, J., Lanning, C., Bjugstad, K. B. Building biocompatible hydrogels for tissue engineering of the brain and spinal cord. J. Funct. Biomater. 3, 839–863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Placone, A. L. et al. Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials 42, 134–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Madl, C. M. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233–1242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barnes, J. M., Przybyla, L., Weaver, V. M. Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 130, 71–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, H. N. et al. Patterning Methods for Polymers in Cell and Tissue Engineering. Ann. Biomed. Eng. 40, 1339–1355 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chaudhuri, O. Viscoelastic hydrogels for 3D cell culture. Biomater. Sci. 5, 1480–1490 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Das, S. et al. Implantable amyloid hydrogels for promoting stem cell differentiation to neurons. NPG Asia Mater. 8, e304 (2016).

    Article  CAS  Google Scholar 

  26. Sack, I. et al. The impact of aging and gender on brain viscoelasticity. NeuroImage 46, 652–657 (2009).

    Article  PubMed  Google Scholar 

  27. Lu, Y. B. et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc. Natl. Acad. Sci. U. S. A. 103, 17759–17764 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Terry, R. D., Deteresa, R., Hansen, L. A. Neocortical Cell Counts in Normal Human Adult Aging. Ann. Neurol. 21, 530–539 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Pelvig, D. P., Pakkenberg, H., Stark, A. K., Pakkenberg, B. Neocortical glial cell numbers in human brains. Neurobiol. Aging 29, 1754–1762 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Pope, W. B. et al. Differential Gene Expression in Glioblastoma Defined by ADC Histogram Analysis: Relationship to Extracellular Matrix Molecules and Survival. Am. J. Neuroradiol. 33, 1059–1064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miroshnikova, Y. A. et al. Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18, 1336–1345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murphy, M. C. et al. Decreased Brain Stiffness in Alzheimer's Disease Determined by Magnetic Resonance Elastography. J. Magn. Reson. Imaging 34, 494–498 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murphy, M. C. et al. Regional brain stiffness changes across the Alzheimer's disease spectrum. NeuroImage-Clin 10, 283–290 (2016).

    Article  PubMed  Google Scholar 

  34. Weickenmeier, J. et al. Brain stiffness increases with myelin content. Acta Biomater. 42, 265–272 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Madl, C. M., Heilshorn, S. C. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche. Annu. Rev. Biomed. Eng. 20, 21–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Denisin, A. K., Pruitt, B. L. Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Russell, L. N., Lampe, K. J. Oligodendrocyte Precursor Cell Viability, Proliferation, and Morphology is Dependent on Mesh Size and Storage Modulus in 3D Poly(ethylene glycol)-Based Hydrogels. ACS Biomater. Sci. Eng. 3, 3459–3468 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Keung, A. J., Asuri, P., Kumar, S., Schaffer, D. V. Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr. Biol. 4, 1049–1058 (2012).

    Article  CAS  Google Scholar 

  40. Koch, D., Rosoff, W. J., Jiang, J. J., Geller, H. M., Urbach, J. S. Strength in the Periphery: Growth Cone Biomechanics and Substrate Rigidity Response in Peripheral and Central Nervous System Neurons. Biophys. J. 102, 452–460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Norman, L. L., Aranda-Espinoza, H. Cortical Neuron Outgrowth is Insensitive to Substrate Stiffness. Cell. Mol. Bioeng. 3, 398–414 (2010).

    Article  Google Scholar 

  42. Leach, J. B., Brown, X. Q., Jacot, J. G., DiMilla, P. A., Wong, J. Y. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4, 26–34 (2007).

    Article  PubMed  Google Scholar 

  43. Moshayedi, P. et al. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry. J. Phys.: Condens. Matter 22, 194114 (2010).

    Google Scholar 

  44. Lourenco, T. et al. Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues. Sci. Rep. 6, 21563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banerjee, A. et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, L. S., Chung, J. E., Chan, P. P. Y., Kurisawa, M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 31, 1148–1157 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Ananthanarayanan, B., Kim, Y., Kumar, S. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32, 7913–7923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jamison, C. E., Marangoni, R. D., Glaser, A. A. Viscoelastic properties of soft tissue by discrete model characterization. J. Biomech. 1, 33–46 (1968).

    Article  CAS  PubMed  Google Scholar 

  49. Sheu, M. T., Huang, J. C., Yeh, G. C., Ho, H. O. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials 22, 1713–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Bryant, S. J., Chowdhury, T. T., Lee, D. A., Bader, D. L., Anseth, K. S. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann. Biomed. Eng. 32, 407–417 (2004).

    Article  PubMed  Google Scholar 

  51. Shen, Z. L., Kahn, H., Ballarini, R., Eppell, S. J. Viscoelastic properties of isolated collagen fibrils. Biophys. J. 100, 3008–3015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nam, S., Hu, K. H., Butte, M. J., Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl. Acad. Sci. U. S. A. 113, 5492–5497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).

    Article  PubMed  CAS  Google Scholar 

  54. Cameron, A. R., Frith, J. E., Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Bauer, A. et al. Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts. Acta Biomater. 62, 82–90 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lou, J. Z., Stowers, R., Nam, S. M., Xia, Y., Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154, 213–222 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Ridet, J. L., Malhotra, S. K., Privat, A., Gage, F. H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Puschmann, T. B. et al. Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia 61, 432–440 (2013).

    Article  PubMed  Google Scholar 

  59. East, E., Golding, J. P., Phillips, J. B. A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. J. Tissue Eng. Regener. Med. 3, 634–646 (2009).

    Article  CAS  Google Scholar 

  60. Zhang, M. et al. Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33, 907–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J., Heilshorn, S. C. Improving viability of stem sells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng., Part A 18, 806–815 (2012).

    Article  CAS  Google Scholar 

  62. Kong, H. J., Kaigler, D., Kim, K., Mooney, D. J. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5, 1720–1727 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Chiu, Y. C., Kocagoz, S., Larson, J. C., Brey, E. M. Evaluation of physical and mechanical properties of porous poly (ethylene glycol)-co-(L-lactic acid) hydrogels during degradation. PLoS One 8, e60728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kharkar, P. M., Kiick, K. L., Kloxin, A. M. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev. 42, 7335–7372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McKinnon, D. D., Kloxin, A. M., Anseth, K. S. Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater. Sci. 1, 460–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Mahoney, M. J., Anseth, K. S. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27, 2265–2274 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hadden, W. J. et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. U. S. A. 114, 5647–5652 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stukel, J. M., Willits, R. K. Mechanotransduction of Neural Cells Through Cell-Substrate Interactions. Tissue Eng., Part B Rev. 22, 173–182 (2016).

    Article  CAS  Google Scholar 

  70. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 642–649 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Wen, J. H. et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13, 979–987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang, C., Tibbitt, M. W., Basta, L., Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (grant no. 2018R1A2A3075013) and by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2016M3C7A1913845). This research was also supported by the Technology Innovation Program (10067787) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and by the KIST Institutional Program (2E27910).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Nam Kim or Nakwon Choi.

Conflict of Interests

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.N., Choi, N. Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip. BioChip J 13, 8–19 (2019). https://doi.org/10.1007/s13206-018-3101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-018-3101-7

Keywords

Navigation