Skip to main content

Advertisement

Log in

Patterning Methods for Polymers in Cell and Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

MSCs:

mesenchymal stem cells

hMSCs:

human mesenchymal stem cells

hESCs:

human embryonic stem cells

HPTFs:

human patellar tendon fibroblasts

PBS:

phosphate buffered saline

OPN:

osteopontin

OCN:

osteocalcin

PDMS:

polydimethyl siloxane

LDPE:

low-density polyethylene

FEP:

fluorinated ethylene propylene

PET:

polyethylene terephthalate

PC:

polycarbonate

PU:

polyurethane

PUA:

polyurethane acrylate

NOA:

Norland Optical Adhesive

PEG:

polyethylene glycol

PEG-DMA:

polyethylene glycol dimethacrylate

PEG-DA:

polyethylene glycol diacrylate

PGMEA:

propylene glycol monomethyl ether acetate

pNIPAM:

poly(N-isopropylacrylamide)

LCST:

lower critical solution temperature

PMMA:

poly(methyl methacrylate)

PS:

polystyrene

PLGA:

poly(lactic-co-glycolic acid)

PGA:

polyglycolic acid

PLA:

polylactide

PCL:

polycaprolactone

PANi:

polyaniline

PPy:

polypyrrole

PEDOT:

poly(3,4-ehtylenedioxythiophene)

PTS:

paratoluenesulfonate

HA:

hyaluronic acid

UV:

ultraviolet

NIL:

nanoimprint lithography

RM:

replica molding

SoMo:

soft molding

CFL:

capillary force lithography

BCL:

block copolymer lithography

NHLBI:

National Heart, Lung and Blood Institute

FDA:

Food and Drug Administration

MSDS:

Material Safety Data Sheets

References

  1. Abe, H., K. Hayashi, and M. Sato. Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. Tokyo: Springer, 1996.

    Google Scholar 

  2. Agrawal, C. M., K. F. Haas, D. A. Leopold, and H. G. Clark. Evaluation of poly(l-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13:176–182, 1992.

    PubMed  CAS  Google Scholar 

  3. Almany, L., and D. Seliktar. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467–2477, 2005.

    PubMed  CAS  Google Scholar 

  4. Armani, D., C. Liu, and N. Aluru. Re-configurable fluid circuits by PDMS elastomer micromachining. Presented at Micro Electro Mechanical Systems, 1999. MEMS ‘99. Twelfth IEEE International Conference on, 17–21 Jan 1999, pp. 222–227.

  5. Ashby, M. F. Materials Selection in Mechanical Design. Burlington, MA: Butterworth-Heinemann, 2011.

    Google Scholar 

  6. ASM International. Materials and Coatings for Medical Devices: Cardiovascular. Materials Park, OH: ASM International, 2009.

    Google Scholar 

  7. Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8:451–465, 2007.

    PubMed  CAS  Google Scholar 

  8. Beaupre, G. S., S. S. Stevens, and D. R. Carter. Mechanobiology in the development, maintenance, and degeneration of articular cartilage. J. Rehabil. Res. Dev. 37:145–151, 2000.

    PubMed  CAS  Google Scholar 

  9. Belanger, M. C., and Y. Marois. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J. Biomed. Mater. Res. 58:467–477, 2001.

    PubMed  CAS  Google Scholar 

  10. Bikram, M., C. Fouletier-Dilling, J. A. Hipp, F. Gannon, A. R. Davis, E. A. Olmsted-Davis, and J. L. West. Endochondral bone formation from hydrogel carriers loaded with BMP2-transduced cells. Ann. Biomed. Eng. 35:796–807, 2007.

    PubMed  Google Scholar 

  11. Bratlie, K. M., T. T. Dang, S. Lyle, M. Nahrendorf, R. Weissleder, R. Langer, and D. G. Anderson. Rapid biocompatibility analysis of materials via in vivo fluorescence imaging of mouse models. PLoS ONE 5:e10032, 2010.

    PubMed  Google Scholar 

  12. Camelliti, P., T. K. Borg, and P. Kohl. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65:40–51, 2005.

    PubMed  CAS  Google Scholar 

  13. Campbell, B. H., W. W. Clark, and J. H. C. Wang. A multi-station culture force monitor system to study cellular contractility. J. Biomech. 36:137–140, 2003.

    PubMed  Google Scholar 

  14. Chandra, D., J. A. Taylor, and S. Yang. Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents. Soft Matter 4:979–984, 2008.

    CAS  Google Scholar 

  15. Chen, C. C., P. C. H. Hsieh, G. M. Wang, W. C. Chen, and M. L. Yeh. The influence of surface morphology and rigidity of the substrata on cell motility. Mater. Lett. 63:1872–1875, 2009.

    CAS  Google Scholar 

  16. Choi, S.-J., H. N. Kim, W. G. Bae, and K.-Y. Suh. Modulus- and surface energy-tunable ultraviolet-curable polyurethane acrylate: properties and applications. J. Mater. Chem. 21:14325–14335, 2011.

    CAS  Google Scholar 

  17. Choi, K. M., and J. A. Rogers. A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J. Am. Chem. Soc. 125:4060–4061, 2003.

    PubMed  CAS  Google Scholar 

  18. Choi, S. J., P. J. Yoo, S. J. Baek, T. W. Kim, and H. H. Lee. An ultraviolet-curable mold for sub-100-nm lithography. J. Am. Chem. Soc. 126:7744–7745, 2004.

    PubMed  CAS  Google Scholar 

  19. Collier, J. H., J. P. Camp, T. W. Hudson, and C. E. Schmidt. Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 50:574–584, 2000.

    PubMed  CAS  Google Scholar 

  20. Cooperstein, M. A., and H. E. Canavan. Biological cell detachment from poly(N-isopropyl acrylamide) and its applications. Langmuir 26:7695–7707, 2010.

    PubMed  CAS  Google Scholar 

  21. Cui, X. Y., and D. C. Martin. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators B-Chem. 89:92–102, 2003.

    Google Scholar 

  22. Dal Zilio, S., K. Tvingstedt, O. Inganas, and M. Tormen. Fabrication of a light trapping system for organic solar cells. Microelectron. Eng. 86:1150–1154, 2009.

    CAS  Google Scholar 

  23. Dalby, M. J., N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6:997–1003, 2007.

    PubMed  CAS  Google Scholar 

  24. Dolatshahi-Pirouz, A., M. Nikkhah, K. Kolind, M. R. Dokmeci, and A. Khademhosseini. Micro- and nanoengineering approaches to control stem cell–biomaterial interactions. J. Funct. Biomater. 2:88–106, 2011.

    CAS  Google Scholar 

  25. Dong, B., N. Lu, M. Zelsmann, N. Kehagias, H. Fuchs, C. M. S. Torres, and L. F. Chi. Fabrication of high-density large-area conducting-polymer nanostructures. Adv. Funct. Mater. 16:1937–1942, 2006.

    CAS  Google Scholar 

  26. Emelianov, S. Y., R. Q. Erkamp, M. A. Lubinski, A. R. Skovoroda, and M. O’Donnell. Non-linear tissue elasticity: adaptive elasticity imaging for large deformations. Presented at Ultrasonics Symposium, 1998. Proceedings, 1998 IEEE, Vol. 1752, 1998, pp. 1753–1756.

  27. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    PubMed  CAS  Google Scholar 

  28. Fisher, O. Z., A. Khademhosseini, R. Langer, and N. A. Peppas. Bioinspired materials for controlling stem cell fate. Accounts Chem. Res. 43:419–428, 2010.

    CAS  Google Scholar 

  29. Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13:2411–2415, 2002.

    PubMed  Google Scholar 

  30. Freed, L. E., G. Vunjaknovakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer. Biodegradable polymer scaffolds for tissue engineering. Nat. Biotechnol. 12:689–693, 1994.

    CAS  Google Scholar 

  31. Fu, J. P., Y. K. Wang, M. T. Yang, R. A. Desai, X. A. Yu, Z. J. Liu, and C. S. Chen. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–739, 2010.

    PubMed  CAS  Google Scholar 

  32. Gajendran, P., and R. Saraswathi. Polyaniline–carbon nanotube composites. Pure Appl. Chem. 80:2377–2395, 2008.

    CAS  Google Scholar 

  33. Gates, B. D., Q. B. Xu, J. C. Love, D. B. Wolfe, and G. M. Whitesides. Unconventional nanofabrication. Annu. Rev. Mater. Res. 34:339–372, 2004.

    CAS  Google Scholar 

  34. Gefen, A., and S. S. Margulies. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37:1339–1352, 2004.

    PubMed  Google Scholar 

  35. Genzer, J., and J. Groenewold. Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2:310–323, 2006.

    CAS  Google Scholar 

  36. Ghista, D., W. Vayo, and H. Sandler. Elastic modulus of the human intact left ventricle—determination and physiological interpretation. Med. Biol. Eng. Comput. 13:151–161, 1975.

    CAS  Google Scholar 

  37. Gilmore, K. J., M. Kita, Y. Han, A. Gelmi, M. J. Higgins, S. E. Moulton, G. M. Clark, R. Kapsa, and G. G. Wallace. Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials 30:5292–5304, 2009.

    PubMed  CAS  Google Scholar 

  38. Goldenberg, L. M., Y. Gritsai, O. Sakhno, O. Kulikovska, and J. Stumpe. All-optical fabrication of 2D and 3D photonic structures using a single polymer phase mask. J. Opt. 12:015103, 2010.

    Google Scholar 

  39. Gordan, O. D., B. N. J. Persson, C. M. Cesa, D. Mayer, B. Hoffmann, S. Dieluweit, and R. Merkel. On pattern transfer in replica molding. Langmuir 24:6636–6639, 2008.

    PubMed  CAS  Google Scholar 

  40. Green, R. A., N. H. Lovell, G. G. Wallace, and L. A. Poole-Warren. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399, 2008.

    PubMed  CAS  Google Scholar 

  41. Greiner, A., and J. H. Wendorff. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Edit. 46:5670–5703, 2007.

    CAS  Google Scholar 

  42. Gunatillake, P. A., and R. Adhikari. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 5:1–16, 2003.

    PubMed  CAS  Google Scholar 

  43. Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19:495–513, 2007.

    CAS  Google Scholar 

  44. Hahn, M. S., L. J. Taite, J. J. Moon, M. C. Rowland, K. A. Ruffino, and J. L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2524, 2006.

    PubMed  CAS  Google Scholar 

  45. Hall, T. J., M. Bilgen, M. F. Insana, and T. A. Krouskop. Phantom materials for elastography. IEEE Trans. Ultrason. Ferr. 44:1355–1365, 1997.

    Google Scholar 

  46. Heo, Y. J., H. Shibata, T. Okitsu, T. Kawanishi, and S. Takeuchi. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc. Natl. Acad. Sci. USA 108:13399–13403, 2011.

    PubMed  CAS  Google Scholar 

  47. Hirose, M., O. H. Kwon, M. Yamato, A. Kikuchi, and T. Okano. Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 1:377–381, 2000.

    PubMed  CAS  Google Scholar 

  48. Hsiue, G. H., R. W. Chang, C. H. Wang, and S. H. Lee. Development of in situ thermosensitive drug vehicles for glaucoma therapy. Biomaterials 24:2423–2430, 2003.

    PubMed  CAS  Google Scholar 

  49. Huang, C. Y., B. Dong, N. Lu, B. J. Yang, L. G. Gao, L. Tian, D. P. Qi, Q. Wu, and L. F. Chi. A strategy for patterning conducting polymers using nanoimprint lithography and isotropic plasma etching. Small 5:583–586, 2009.

    PubMed  CAS  Google Scholar 

  50. Huh, D., K. L. Mills, X. Y. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater. 6:424–428, 2007.

    PubMed  CAS  Google Scholar 

  51. Idota, N., T. Tsukahara, K. Sato, T. Okano, and T. Kitamori. The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30:2095–2101, 2009.

    PubMed  CAS  Google Scholar 

  52. Im, S. G., P. J. Yoo, P. T. Hammond, and K. K. Gleason. Grafted conducting polymer films for nano-patterning onto various organic and inorganic substrates by oxidative chemical vapor deposition. Adv. Mater. 19:2863–2867, 2007.

    CAS  Google Scholar 

  53. Ishiyama, C., and Y. Higo. Effects of humidity on Young’s modulus in poly(methyl methacrylate). J. Polym. Sci. Polym. Phys. 40:460–465, 2002.

    CAS  Google Scholar 

  54. Jang, J. H., D. Dendukuri, T. A. Hatton, E. L. Thomas, and P. S. Doyle. A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew. Chem. Int. Ed. 46:9027–9031, 2007.

    CAS  Google Scholar 

  55. Jang, K. J., M. S. Kim, D. Feltrin, N. L. Jeon, K. Y. Suh, and O. Pertz. Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth. PLoS ONE 5:e15966, 2010.

    PubMed  CAS  Google Scholar 

  56. Janmey, P. A., and C. A. McCulloch. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9:1–34, 2007.

    PubMed  CAS  Google Scholar 

  57. Jeong, H. E., J. K. Lee, H. N. Kim, S. H. Moon, and K. Y. Suh. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc. Natl. Acad. Sci. USA 106:5639–5644, 2009.

    PubMed  CAS  Google Scholar 

  58. Jeong, H. E., and K. Y. Suh. On the role of oxygen in fabricating microfluidic channels with ultraviolet curable materials. Lab Chip 8:1787–1792, 2008.

    PubMed  CAS  Google Scholar 

  59. Jones, B. F., M. E. Wall, R. L. Carroll, S. Washburn, and A. J. Banes. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J. Biomech. 38:1653–1664, 2005.

    PubMed  Google Scholar 

  60. Kadler, K. E., D. J. S. Hulmes, Y. Hojima, and D. J. Prockop. Assembly of type-I collagen fibrils denovo by the specific enzymatic cleavage of pC collagen—the fibrils formed at about 37-degrees-C are similar in diameter, roundness, and apparent flexibility to the collagen fibrils seen in connective-tissue. Ann. N. Y. Acad. Sci. 580:214–224, 1990.

    PubMed  CAS  Google Scholar 

  61. Khademhosseini, A., S. Jon, K. Y. Suh, T. N. T. Tran, G. Eng, J. Yeh, J. Seong, and R. Langer. Direct patterning of protein- and cell-resistant polymeric monolayers and microstructures. Adv. Mater. 15:1995–2000, 2003.

    CAS  Google Scholar 

  62. Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl Acad. Sci. USA 103:2480–2487, 2006.

    PubMed  CAS  Google Scholar 

  63. Kim, D. H., K. Han, K. Gupta, K. W. Kwon, K. Y. Suh, and A. Levchenko. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30:5433–5444, 2009.

    PubMed  CAS  Google Scholar 

  64. Kim, P., H. E. Jeong, A. Khademhosseini, and K. Y. Suh. Fabrication of non-biofouling polyethylene glycol micro- and nanochannels by ultraviolet-assisted irreversible sealing. Lab Chip 6:1432–1437, 2006.

    PubMed  CAS  Google Scholar 

  65. Kim, P., H. Y. Kim, J. K. Kim, G. Reiter, and K. Y. Suh. Multi-curvature liquid meniscus in a nanochannel: evidence of interplay between intermolecular and surface forces. Lab Chip 9:3255–3260, 2009.

    PubMed  CAS  Google Scholar 

  66. Kim, P., R. Kwak, S. H. Lee, and K. Y. Suh. Solvent-assisted decal transfer lithography by oxygen-plasma bonding and anisotropic swelling. Adv. Mater. 22:2426–2429, 2010.

    PubMed  CAS  Google Scholar 

  67. Kim, Y. S., H. H. Lee, and P. T. Hammond. High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers. Nanotechnology 14:1140–1144, 2003.

    CAS  Google Scholar 

  68. Kim, D. H., H. Lee, Y. K. Lee, J. M. Nam, and A. Levchenko. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv. Mater. 22:4551–4566, 2010.

    PubMed  CAS  Google Scholar 

  69. Kim, H. N., S. H. Lee, and K. Y. Suh. Controlled mechanical fracture for fabricating microchannels with various size gradients. Lab Chip 11:717–722, 2011.

    PubMed  CAS  Google Scholar 

  70. Kim, D. H., E. A. Lipke, P. Kim, R. Cheong, S. Thompson, M. Delannoy, K. Y. Suh, L. Tung, and A. Levchenko. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107:565–570, 2010.

    PubMed  CAS  Google Scholar 

  71. Kim, D. H., C. H. Seo, K. Han, K. W. Kwon, A. Levchenko, and K. Y. Suh. Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv. Funct. Mater. 19:1579–1586, 2009.

    PubMed  CAS  Google Scholar 

  72. Kim, K.-H., N.-Y. Song, B.-K. Choo, D. Pribat, J. Jang, and K.-C. Park. Mechanical characteristics of the hard-polydimethylsiloxane for smart lithography. Presented at EKC2008 Proceedings of the EU-Korea Conference on Science and Technology, 2008, pp. 229–237.

  73. Kim, D. H., P. K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11:203–233, 2009.

    PubMed  CAS  Google Scholar 

  74. Kotov, N. A., J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini. Nanomaterials for neural interfaces. Adv. Mater. 21:3970–4004, 2009.

    CAS  Google Scholar 

  75. Kotwal, A., and C. E. Schmidt. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22:1055–1064, 2001.

    PubMed  CAS  Google Scholar 

  76. Krouskop, T. A., T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall. Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20:260–274, 1998.

    PubMed  CAS  Google Scholar 

  77. Kwak, M. K., H. E. Jeong, and K. Y. Suh. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv. Mater. 23:3949–3953, 2011.

    PubMed  CAS  Google Scholar 

  78. Kwon, K. W., S. S. Choi, S. H. Lee, B. Kim, S. N. Lee, M. C. Park, P. Kim, S. Y. Hwang, and K. Y. Suh. Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7:1461–1468, 2007.

    PubMed  CAS  Google Scholar 

  79. Lang, U., N. Naujoks, and J. Dual. Mechanical characterization of PEDOT:PSS thin films. Synth. Met. 159:473–479, 2009.

    CAS  Google Scholar 

  80. Leach, J. B., X. Q. Brown, J. G. Jacot, P. A. DiMilla, and J. Y. Wong. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4:26–34, 2007.

    PubMed  Google Scholar 

  81. Lee, J. Y., C. A. Bashur, A. S. Goldstein, and C. E. Schmidt. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335, 2009.

    PubMed  CAS  Google Scholar 

  82. Lee, H., R. V. Bellamkonda, W. Sun, and M. E. Levenston. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2:81–89, 2005.

    PubMed  Google Scholar 

  83. Lee, S. H., H. E. Jeong, M. C. Park, J. Y. Hur, H. S. Cho, S. H. Park, and K. Y. Suh. Fabrication of hollow polymeric microstructures for shear-protecting cell containers. Adv. Mater. 20:788–792, 2008.

    CAS  Google Scholar 

  84. Lee, S. H., D. H. Kang, H. N. Kim, and K. Y. Suh. Use of directly molded poly(methyl methacrylate) channels for microfluidic applications. Lab Chip 10:3300–3306, 2010.

    PubMed  CAS  Google Scholar 

  85. Lee, S. H., H. N. Kim, R. K. Kwak, and K. Y. Suh. Effects of mold rising angle and polymer concentration in solvent-assisted molding. Langmuir 25:12024–12029, 2009.

    PubMed  CAS  Google Scholar 

  86. Lee, M. R., K. W. Kwon, H. Jung, H. N. Kim, K. Y. Suh, K. Kim, and K. S. Kim. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31:4360–4366, 2010.

    PubMed  CAS  Google Scholar 

  87. Lee, J. Y., S. S. Shah, J. Yan, M. C. Howland, A. N. Parikh, T. R. Pan, and A. Revzin. Integrating sensing hydrogel microstructures into micropatterned hepatocellular cocultures. Langmuir 25:3880–3886, 2009.

    PubMed  CAS  Google Scholar 

  88. Legant, W. R., J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7:969–971, 2010.

    PubMed  CAS  Google Scholar 

  89. Li, Z. W., Y. N. Gu, L. Wang, H. X. Ge, W. Wu, Q. F. Xia, C. S. Yuan, Y. Chen, B. Cui, and R. S. Williams. Hybrid nanoimprint-soft lithography with sub-15 nm resolution. Nano Lett. 9:2306–2310, 2009.

    PubMed  Google Scholar 

  90. Li, M. Y., Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715, 2006.

    PubMed  CAS  Google Scholar 

  91. Li, S. L., C. W. Macosko, and H. S. White. Electrochemical processing of conducting polymer fibers. Science 259:957–960, 1993.

    CAS  Google Scholar 

  92. Li, G., V. Shrotriya, Y. Yao, J. S. Huang, and Y. Yang. Manipulating regioregular poly(3-hexylthiophene): [6,6]-phenyl-C-61-butyric acid methyl ester blends—route towards high efficiency polymer solar cells. J. Mater. Chem. 17:3126–3140, 2007.

    CAS  Google Scholar 

  93. Li, Z. Z., G. G. Yang, M. Khan, D. Stone, S. L. Y. Woo, and J. H. C. Wang. Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. Am. J. Sports Med. 32:435–440, 2004.

    PubMed  CAS  Google Scholar 

  94. Li, P. C., W. C. Yeh, Y. M. Jeng, H. C. Hsu, P. L. Kuo, M. L. Li, P. M. Yang, and P. H. Lee. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28:467–474, 2002.

    PubMed  CAS  Google Scholar 

  95. Liliensiek, S. J., J. A. Wood, J. A. Yong, R. Auerbach, P. F. Nealey, and C. J. Murphy. Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 31:5418–5426, 2010.

    PubMed  CAS  Google Scholar 

  96. Lim, S. H., and H. Q. Mao. Electrospun scaffolds for stem cell engineering. Adv. Drug Deliver. Rev. 61:1084–1096, 2009.

    CAS  Google Scholar 

  97. Liu, W. E., M. L. Ma, K. M. Bratlie, T. T. Dang, R. Langer, and D. G. Anderson. Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials 32:1796–1801, 2011.

    PubMed  Google Scholar 

  98. Lloyd, A. W., R. G. A. Faragher, and S. P. Denyer. Ocular biomaterials and implants. Biomaterials 22:769–785, 2001.

    PubMed  CAS  Google Scholar 

  99. Luna, J. I., J. Ciriza, M. E. Garcia-Ojeda, M. Kong, A. Herren, D. K. Lieu, R. A. Li, C. C. Fowlkes, M. Khine, and K. E. McCloskey. Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells. Tissue Eng. Part C Methods 17:579–588, 2011.

    PubMed  Google Scholar 

  100. Marencic, A. P., and R. A. Register. Controlling order in block copolymer thin films for nanopatterning applications. Annu. Rev. Chem. Biomol. 1:277–297, 2010.

    CAS  Google Scholar 

  101. Markovitz-Bishitz, Y., Y. Tauber, E. Afrimzon, N. Zurgil, M. Sobolev, Y. Shafran, A. Deutsch, S. Howitz, and M. Deutsch. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Biomaterials 31:8436–8444, 2010.

    PubMed  CAS  Google Scholar 

  102. Mathews, M. B. Connective tissue. Macromolecular structure and evolution. Mol. Biol. Biochem. Biophys. 19:1–318, 1975.

    PubMed  Google Scholar 

  103. Matsumaru, Y., A. Hyodo, T. Nose, S. Ito, T. Hirano, and S. Ohashi. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery. J. Biomater. Sci. Polym. Edn. 7:795–804, 1996.

    CAS  Google Scholar 

  104. Meng, J., H. Kong, Z. Z. Han, C. Y. Wang, G. J. Zhu, S. S. Xie, and H. Y. Xu. Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. J. Biomed. Mater. Res. A 88A:105–116, 2009.

    CAS  Google Scholar 

  105. Mente, P. L., and J. L. Lewis. Experimental-method for the measurement of the elastic-modulus of trabecular bone tissue. J. Orthop. Res. 7:456–461, 1989.

    PubMed  CAS  Google Scholar 

  106. Michel, B., and H. Schmid. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042–3049, 2000.

    Google Scholar 

  107. Middleton, J. C., and A. J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346, 2000.

    PubMed  CAS  Google Scholar 

  108. Mih, J. D., and D. J. Tschumperlin. Lung fibroblast behavior is tuned by substrate stiffness. Proc. Am. Thorac. Soc. 5:364–365, 2008.

    Google Scholar 

  109. Mills, K. L., D. Huh, S. Takayama, and M. D. Thouless. Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking. Lab Chip 10:1627–1630, 2010.

    PubMed  CAS  Google Scholar 

  110. Mills, K. L., X. Y. Zhu, S. C. Takayama, and M. D. Thouless. The mechanical properties of a surface-modified layer on polydimethylsiloxane. J. Mater. Res. 23:37–48, 2008.

    PubMed  CAS  Google Scholar 

  111. Mohr, J. C., J. J. de Pablo, and S. P. Palecek. 3-D microwell culture of human embryonic stem cells. Biomaterials 27:6032–6042, 2006.

    PubMed  CAS  Google Scholar 

  112. Mohr, J. C., J. H. Zhang, S. M. Azarin, A. G. Soerens, J. J. de Pablo, J. A. Thomson, G. E. Lyons, S. P. Palecek, and T. J. Kamp. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials 31:1885–1893, 2010.

    PubMed  CAS  Google Scholar 

  113. Murray, P., G. M. Spinks, G. G. Wallace, and R. P. Burford. In situ mechanical properties of tosylate doped (pTS) polypyrrole. Synth. Met. 84:847–848, 1997.

    CAS  Google Scholar 

  114. Nahum, A. M., and J. Melvin. Accidental Injury: Biomechanics and Prevention. New York: Springer, 2002.

    Google Scholar 

  115. Nemir, S., and J. L. West. Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38:2–20, 2010.

    PubMed  Google Scholar 

  116. Norland Products Corporation Database. http://www.norlandprod.com/adhesiveindex2.html.

  117. Ochsner, M., M. Textor, V. Vogel, and M. L. Smith. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape. PLoS ONE 5:e9445, 2010.

    PubMed  Google Scholar 

  118. Odom, T. W., J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides. Improved pattern transfer in soft lithography using composite stamps. Langmuir 18:5314–5320, 2002.

    CAS  Google Scholar 

  119. Ohya, S., Y. Nakayama, and T. Matsuda. In vivo evaluation of poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as an in situ-formable scaffold. J. Artif. Organs 7:181–186, 2004.

    PubMed  CAS  Google Scholar 

  120. Ommaya, A. K. Mechanical properties of tissues of the nervous system. J. Biomech. 1:127–138, 1968.

    PubMed  CAS  Google Scholar 

  121. Park, M. C., J. Y. Hur, H. S. Cho, S. H. Park, and K. Y. Suh. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 11:79–86, 2011.

    PubMed  CAS  Google Scholar 

  122. Park, M. C., J. Y. Hur, K. W. Kwon, S. H. Park, and K. Y. Suh. Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus. Lab Chip 6:988–994, 2006.

    PubMed  CAS  Google Scholar 

  123. Park, J., H. N. Kim, D. H. Kim, A. Levchenko, and K. Y. Suh. Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology. IEEE Trans. Nanobiosci., 2011. doi:10.1109/TNB.2011.2165728.

  124. Pascual, M., R. D. Swinford, and N. TolkoffRubin. Acute renal failure: role of dialysis membrane biocompatibility. Annu. Rev. Med. 48:467–476, 1997.

    PubMed  CAS  Google Scholar 

  125. Patel, S., K. Kurpinski, R. Quigley, H. F. Gao, B. S. Hsiao, M. M. Poo, and S. Li. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett. 7:2122–2128, 2007.

    PubMed  CAS  Google Scholar 

  126. Pedrotty, D. M., J. Koh, B. H. Davis, D. A. Taylor, P. Wolf, and L. E. Niklason. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am. J. Physiol. Heart C 288:H1620–H1626, 2005.

    CAS  Google Scholar 

  127. Peng, R., X. Yao, and J. Ding. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 32:8048–8057, 2011.

    PubMed  CAS  Google Scholar 

  128. Piruska, A., I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5:1348–1354, 2005.

    PubMed  CAS  Google Scholar 

  129. Qin, D., Y. N. Xia, and G. M. Whitesides. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5:491–502, 2010.

    PubMed  CAS  Google Scholar 

  130. Radmacher, M., and J. Domke. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14:3320–3325, 1998.

    Google Scholar 

  131. Razal, J. M., M. Kita, A. F. Quigley, E. Kennedy, S. E. Moulton, R. M. I. Kapsa, G. M. Clark, and C. G. Wallace. Wet-spun biodegradable fibers on conducting platforms: novel architectures for muscle regeneration. Adv. Funct. Mater. 19:3381–3388, 2009.

    CAS  Google Scholar 

  132. Revzin, A., R. J. Russell, V. K. Yadavalli, W. G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. V. Pishko. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17:5440–5447, 2001.

    PubMed  CAS  Google Scholar 

  133. Rho, J. Y., R. B. Ashman, and C. H. Turner. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26:111–119, 1993.

    PubMed  CAS  Google Scholar 

  134. Rogers, J. A., and H. H. Lee. Unconventional Nanopatterning Techniques and Applications. Hoboken, NJ: Wiley, 2009.

    Google Scholar 

  135. Saha, K., A. J. Keung, E. F. Irwin, Y. Li, L. Little, D. V. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.

    PubMed  CAS  Google Scholar 

  136. Samani, A., J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52:1565–1576, 2007.

    PubMed  Google Scholar 

  137. Sanghvi, A. B., K. P. H. Miller, A. M. Belcher, and C. E. Schmidt. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat. Mater. 4:496–502, 2005.

    PubMed  CAS  Google Scholar 

  138. Schiffman, J. D., and C. L. Schauer. A review: electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48:317–352, 2008.

    CAS  Google Scholar 

  139. Schild, H. G. Poly(N-isopropylacrylamide)—experiment, theory and application. Prog. Polym. Sci. 17:163–249, 1992.

    CAS  Google Scholar 

  140. Schmidt, C. E., V. R. Shastri, J. P. Vacanti, and R. Langer. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl Acad. Sci. USA 94:8948–8953, 1997.

    PubMed  CAS  Google Scholar 

  141. Shimizu, T., M. Yamato, T. Akutsu, T. Shibata, Y. Isoi, A. Kikuchi, M. Umezu, and T. Okano. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J. Biomed. Mater. Res. 60:110–117, 2002.

    PubMed  CAS  Google Scholar 

  142. Silva, J. R., H. Pan, D. Wu, A. Nekouzadeh, K. F. Decker, J. M. Cui, N. A. Baker, D. Sept, and Y. Rudy. A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc. Natl Acad. Sci. USA 106:11102–11106, 2009.

    PubMed  CAS  Google Scholar 

  143. Silver, F. H., Y. P. Kato, M. Ohno, and A. J. Wasserman. Analysis of mammalian connective-tissue—relationship between hierarchical structures and mechanical-properties. J. Long-Term Eff. Med. 2:165–198, 1992.

    CAS  Google Scholar 

  144. Sitti, M., and R. S. Fearing. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Technol. 17:1055–1073, 2003.

    CAS  Google Scholar 

  145. Sochol, R. D., A. T. Higa, R. R. R. Janairo, S. Li, and L. W. Lin. Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7:4606–4609, 2011.

    CAS  Google Scholar 

  146. Stevens, M. P. Polymer Chemistry: An Introduction. New York: Oxford University Press, 1999.

    Google Scholar 

  147. Suh, K. Y., Y. S. Kim, and H. H. Lee. Capillary force lithography. Adv. Mater. 13:1386–1389, 2001.

    CAS  Google Scholar 

  148. Suh, K. Y., M. C. Park, and P. Kim. Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv. Funct. Mater. 19:2699–2712, 2009.

    CAS  Google Scholar 

  149. Sung, J. H., J. J. Yu, D. Luo, M. L. Shuler, and J. C. March. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11:389–392, 2011.

    PubMed  CAS  Google Scholar 

  150. Tabesh, H., G. Amoabediny, N. S. Nik, M. Heydari, M. Yosefifard, S. O. R. Siadat, and K. Mottaghy. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem. Int. 54:73–83, 2009.

    PubMed  CAS  Google Scholar 

  151. Takigawa, T., T. Yamawaki, K. Takahashi, and T. Masuda. Change in Young’s modulus of poly(N-isopropylacrylamide) gels by volume phase transition. Polym. Gels Netw. 5:585–589, 1997.

    CAS  Google Scholar 

  152. Taylor, Z., and K. Miller. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37:1263–1269, 2004.

    PubMed  Google Scholar 

  153. Tekin, H., M. Anaya, M. D. Brigham, C. Nauman, R. Langer, and A. Khademhosseini. Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip 10:2411–2418, 2010.

    PubMed  CAS  Google Scholar 

  154. Tekin, H., T. Tsinman, J. G. Sanchez, B. J. Jones, G. Camci-Unal, J. W. Nichol, R. Langer, and A. Khademhosseini. Responsive micromolds for sequential patterning of hydrogel microstructures. J. Am. Chem. Soc. 133:12944–12947, 2011.

    PubMed  CAS  Google Scholar 

  155. Teo, W. E., and S. Ramakrishna. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106, 2006.

    PubMed  CAS  Google Scholar 

  156. Thubrikar, M., W. C. Piepgrass, L. P. Bosher, and S. P. Nolan. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ. Res. 47:792–800, 1980.

    PubMed  CAS  Google Scholar 

  157. Tsai, I. Y., M. Kimura, and T. P. Russell. Fabrication of a gradient heterogeneous surface using homopolymers and diblock copolymers. Langmuir 20:5952–5957, 2004.

    PubMed  CAS  Google Scholar 

  158. Tsai, I. Y., M. Kimura, R. Stockton, J. A. Green, R. Puig, B. Jacobson, and T. P. Russell. Fibroblast adhesion to micro- and nano-heterogeneous topography using diblock copolymers and homopolymers. J. Biomed. Mater. Res. A 71A:462–469, 2004.

    CAS  Google Scholar 

  159. Tzvetkova-Chevolleau, T., A. Stephanou, D. Fuard, J. Ohayon, P. Schiavone, and P. Tracqui. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29:1541–1551, 2008.

    PubMed  CAS  Google Scholar 

  160. Vasita, R., and D. S. Katti. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 1:15–30, 2006.

    CAS  Google Scholar 

  161. Veronese, F. M., and G. Pasut. PEGylation, successful approach to drug delivery. Drug Discov. Today 10:1451–1458, 2005.

    PubMed  CAS  Google Scholar 

  162. Vihola, H., A. Laukkanen, L. Valtola, H. Tenhu, and J. Hirvonen. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064, 2005.

    PubMed  CAS  Google Scholar 

  163. Wang, H., P. L. Prendiville, P. J. McDonnell, and W. V. Chang. An ultrasonic technique for the measurement of the elastic moduli of human cornea. J. Biomech. 29:1633–1636, 1996.

    PubMed  CAS  Google Scholar 

  164. Wang, J. H. C., G. G. Yang, and Z. Z. Li. Controlling cell responses to cyclic mechanical stretching. Ann. Biomed. Eng. 33:337–342, 2005.

    PubMed  Google Scholar 

  165. Wen-Chun, Y., J. Yung-Ming, H. Hey-Chi, K. Po-Ling, L. Meng-Lin, Y. Pei-Ming, L. Po Huang, and L. Pai-Chi. Young’s modulus measurements of human liver and correlation with pathological findings. Presented at Ultrasonics Symposium, 2001 IEEE, Vol. 1232, 2001, pp. 1233–1236.

  166. Wu, W., W. M. Tong, J. Bartman, Y. F. Chen, R. Walmsley, Z. N. Yu, Q. F. Xia, I. Park, C. Picciotto, J. Gao, S. Y. Wang, D. Morecroft, J. Yang, K. K. Berggren, and R. S. Williams. Sub-10 nm nanoimprint lithography by wafer bowing. Nano Lett. 8:3865–3869, 2008.

    PubMed  CAS  Google Scholar 

  167. Xia, Y. N., and G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci. 28:153–184, 1998.

    CAS  Google Scholar 

  168. Yamato, M., C. Konno, M. Utsumi, A. Kikuchi, and T. Okano. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23:561–567, 2002.

    PubMed  CAS  Google Scholar 

  169. Yamato, M., O. H. Kwon, M. Hirose, A. Kikuchi, and T. Okano. Novel patterned cell coculture utilizing thermally responsive grafted polymer surfaces. J. Biomed. Mater. Res. 55:137–140, 2001.

    PubMed  CAS  Google Scholar 

  170. Yang, S., K. Khare, and P. C. Lin. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 20:2550–2564, 2010.

    CAS  Google Scholar 

  171. Yang, Y., and K. W. Leong. Nanoscale surfacing for regenerative medicine. Wires Nanomed. Nanobiotechnol. 2:478–495, 2010.

    CAS  Google Scholar 

  172. Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610, 2005.

    PubMed  CAS  Google Scholar 

  173. Yim, E. K. F., E. M. Darling, K. Kulangara, F. Guilak, and K. W. Leong. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31:1299–1306, 2010.

    PubMed  CAS  Google Scholar 

  174. Yoo, P. J., S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, and H. H. Lee. Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing. Chem. Mater. 16:5000–5005, 2004.

    CAS  Google Scholar 

  175. You, M. H., M. K. Kwak, D. H. Kim, K. Kim, A. Levchenko, D. Y. Kim, and K. Y. Suh. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 11:1856–1862, 2010.

    PubMed  CAS  Google Scholar 

  176. Young, R. J. Introduction to Polymers. London: Chapman & Hall, 1981.

    Google Scholar 

  177. Zhu, X. Y., K. L. Mills, P. R. Peters, J. H. Bahng, E. H. Liu, J. Shim, K. Naruse, M. E. Csete, M. D. Thouless, and S. Takayama. Fabrication of reconfigurable protein matrices by cracking. Nat. Mater. 4:403–406, 2005.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation Grant funded by the Korean Government (NRF-2011-220-D00035), WCU (World Class University) program (R31-2008-000-10083-0) and Basic Science Research Program (2010-0027955). D. H. Kim thanks Department of Bioengineering at the University of Washington for the new faculty startup fund. D. H. Kim is also supported by a Perkins Coie Award for Discovery. A. Jiao was supported by NIH training Grant T32-EB001650-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kahp-Yang Suh.

Additional information

Associate Editor Michael Shuler oversaw the review of this article.

The first two authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.N., Kang, DH., Kim, M.S. et al. Patterning Methods for Polymers in Cell and Tissue Engineering. Ann Biomed Eng 40, 1339–1355 (2012). https://doi.org/10.1007/s10439-012-0510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0510-y

Keywords

Navigation