Skip to main content
Log in

Spatial dynamics of dark septate endophytes and soil factors in the rhizosphere of Ammopiptanthus mongolicus in Inner Mongolia, China

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Improved understanding of the spatial patterns of desert soil resources and the role of dark septate endophytes (DSE) is required to measure plant growth in desert areas. Spatial dynamics of DSE and soil factors were investigated in Wuhai, Urad Back Banner and Alxa Left Banner, located in Inner Mongolia, China. Soil samples in the rhizosphere of Ammopiptanthus mongolicus were collected. Sampling sites and soil depth had a significant influence on the morphology, distribution and infection of DSE. Hyphae, microsclerotia and total root infection of DSE reached their maxima in the 0–20 cm soil layer. Microsclerotial infection at Wuhai and Alxa Left Banner was higher than that at Urad Back Banner. Hyphal infection was significantly positively correlated with amounts of organic matter and available nitrogen, and activities of soil alkaline phosphatase, acid phosphatase and urease. Microsclerotial infection was significantly positively correlated with amounts of soil organic matter and available nitrogen. Root infection had no significant correlation with soil factors. We concluded that the dynamics of DSE have a highly spatial pattern, and were influenced by nutrient availability and enzymatic activity. This study suggests that the morphology and infection of DSE are useful indicators for evaluating soil quality and function of desert ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot Rev Can Bot 83:1–13

    Article  Google Scholar 

  • Baldi A, Jain A, Gupta N, Srivastava AK, Bisaria VS (2008) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30:1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Barneit HL, Hunter BB (1977) Illustrated genera of the imperfect fungi, 3rd edn. Science Press, Beijing

    Google Scholar 

  • Barrow JR (2003) A typical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247

    Article  CAS  PubMed  Google Scholar 

  • Bjorbækmo MFM, Carlsen T, Brysting A, Vrålstadl T, Høiland K, Ugland KI, Geml J, Schumacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic dry asoctopetala. BMC Plant Biol 10:244

    Article  PubMed Central  PubMed  Google Scholar 

  • Caldwell BA, Jumpponen A (2003) Arylsufatase production by mycorrhizal fungi. Fourth International Conference on Mycorrhizae, Montreal, p 312

    Google Scholar 

  • Casanova-Katny MA, Torres-Mellado GA, Palfner G, Cavieres LA (2011) The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species. Mycorrhiza 21:613–622

    Article  PubMed  Google Scholar 

  • Deacon J (2006) Fungal biology. Blackwell, Malden

    Google Scholar 

  • Eswaran H, Rice T, Ahrens R, Stewart BA (2002) Soil classification: a global desk reference. CRC Press, Boca Raton, pp 1–263

    Google Scholar 

  • Feng JCH, Zhou YJ, Zhou HY (2001) Physiological responses of Ammopiptanthus mongolicus (Maxira)to change of soilmoisture. J Desert Res 21(8):223–226

    Google Scholar 

  • Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277–281

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of technique for measuring vesicular-arbuscular mycorrhizaal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008) Dark septate endophytes (DSE) of the Phialocephala fortiniiAcephala applanata species complex in tree roots: classification, population biology, and ecology. Bot 86:1355–1369

    Article  Google Scholar 

  • Grünig CR, Queloz V, Duo A, Sieber TN (2009) Phylogeny of Phaeomo Uisia piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycol Res 113:207–221

    Article  PubMed  Google Scholar 

  • He HB, Hao YG, Ding Q, Jia GX (2006) Chamcteristics of plant community of Ammopiptanthus mongolicus and the diversity of its nodules. J Beijing For Univ 28(4):123–128

    Google Scholar 

  • He XL, Yang J, Zhao LL (2011) Spatial distribution of arbuscular mycorrhizal fungi in Salix psammophila soil in Inner Mongolia desert rootzone. Acta Ecol Sin 31(8):2159–2168

    Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415

    Article  Google Scholar 

  • Hoffmann GC, Teicher K (1961) A colorimetric technique for determining urease activity in soil. Dung Boden 95:55–63

    Article  Google Scholar 

  • Jiang Q, He XL, Chen WY, Zhang YJ, Rong XR, Wang L (2014) Spatial distribution of AM and DSE fungi in the rhizosphere of Ammopiptanthus nanus. Acta Ecol Sin 34(11):2929–2937

    CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Kauppinen M, Raveala K, Wäli PR, Ruotsalainen AL (2014) Contrasting preferences of arbuscular mycorrhizal and dark septate fungi colonizing boreal and subarctic Avenella flexuosa. Mycorrhiza 24:171–177

    Article  CAS  PubMed  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: Infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Kytöviita MM (2005) Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol Ecol 53:27–32

    Article  PubMed  Google Scholar 

  • Liu JL (2011) Isolation and determination of antioxidant activity of endophytic fungi from Lycium barum. Lishizhen Med Mat Med Res 22(4):857–860

    Google Scholar 

  • Mandyam K (2008) Dark septate fungal endophytes from a tallgrass prairie and their continuum of interactions with host plants. Ph. D. thesis. Kansas State University, Manhattan, KS

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root colonizing dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  • Muthukumar T, Tamilselvi V (2010) Occurrence and morphology of endorhizal fungi in crop species. Trop Subtrop Agroecosyst 12:593–604

    Google Scholar 

  • Narisawa K, Usuki F, Hashiba T (2004) Control of Verticillium yellows in Chinese cabbage by the dark septate endophytic fungus LtVB3. Phytopathology 94:412–418

    Article  CAS  PubMed  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  CAS  PubMed  Google Scholar 

  • Newsham KK, Upson R, Read DJ (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2:10–20

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture, Washington, p 939

    Google Scholar 

  • Parbery DG (1996) Trophism and the ecology og fungi associated with plants. Biol Rev 71:473–527

    Article  Google Scholar 

  • Pennisi E (2003) Fungi shield new host plant from heat and drought. Science 301:1466

    CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscualr mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Rai MK, Varma A, Pandey AK (2004) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479–481

    Article  CAS  PubMed  Google Scholar 

  • Rains KC, Nadkarni NM, Bledsoe CS (2003) Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257–264

    Article  PubMed  Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Article  Google Scholar 

  • Reblova M, Gams W, Slepanek V (2011) The new hyphomycete genera Brachyalara and lnfundichalara, the similar Bxochalara and species of ‘Phidophom sect. Catemilatae’ (Leoliomyceies). Fungal Divers 46:67–86

    Article  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Richier S, Furla P, Plantivaux A, Merle PL, Allemand D (2005) Symbiosis- induced adaptation to oxidative stress. J Exp Biol 208:277–285

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Volkenburgh EV, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat- adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rowell DL (1994) Soil Science: Methods and Applications. Longman Group U.K. Ltd, London

    Google Scholar 

  • Ruotsalainen AL, Vare H, Vestberg M (2002) Seasonality of root fungal colonization in low-alpine herbs. Mycorrhiza 12:29–36

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SK, Sobieniak-Wiseman LC, Kageyama SA, Halloy SRP, Schadt C (2008) Mycorrhizal and dark septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arctic Antarct. Alp Res 40:576–583

    Article  Google Scholar 

  • Sieber TN, Grünig CR (2006) Biodiversity of fungal root-endophyte communites and populations, in particular of the dark septate endophyte Phialocephala fortinii s.l. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer- Verlag, Berlin, pp 107–132

    Chapter  Google Scholar 

  • Silvani VA, Fracchia S, Fernández L, Pérgola M, Godeas A (2008) A simple method to obtain endophytic microorganisms from field collected roots. Soil Biol Biochem 40:1259–1263

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, Amsterdam

    Google Scholar 

  • Takeshi T, Hiroyuki U, Junichi K, Muneto H, Naoko M, Kenji F, Zhang GSH, Wang LH, Ken Y, Norikazu Y (2012) Colonization and community structure of root-associated microorganisms of Sabina vulgaris with soil depth in a semiarid desert ecosystem with shallow groundwater. Mycorrhiza 22:419–428

    Article  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    Article  CAS  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11

    Article  PubMed  Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    Article  CAS  PubMed  Google Scholar 

  • Wei JC (1979) Handbook of fungal identification. Science Technology Press, Shanghai

    Google Scholar 

  • Wei QSH, Wang JH (2005) A preliminary study on the distribution patterens and characeristics of Ammopiptanthus mongolicus populations in different desert environments. Acta Phytoecologica Sin 29(4):591–598

    Google Scholar 

  • Wilson BJ, Addy HD, Tsuneda A, Hambleton S, Currah RS (2004) Phialocephala sphaeroides sp. nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot Rev Can Bot 82:607–617

    Article  CAS  Google Scholar 

  • Wurzburger N, Bledsoe CS (2001) Comparison of ericoid and ectomycorrhizal colonization and ectomycorrhizal morphotypes in mixed conifer and pygmy forests on the northern California coast. Can J Bot Rev Can Bot 79:1202–1210

    Article  CAS  Google Scholar 

  • Zhou LK (1987) Soil enzymology. Science Press, Beijing

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Project 31170488). We are grateful to Prof. Michael F. Allen (Center for Conservation Biology, University of California, Riverside, USA) for the manuscript revisions. We additionally thank International Science Editing Ltd. for the language editing service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli He.

Additional information

Highlights

A.mongolicus is a tertiary relict and the only evergreen broad-leaf legume shrub in desert of China.

It is particularly suited for the revegetation of degraded lands, which can reduce desertification.

A strong symbiosis exists between A.mongolicus and DSE in Inner Mongolian desert of China.

Dynamics of DSE have a highly spatial pattern, and are influenced by soil factors in desert ecosystem.

Colonization of DSE are useful indicators for evaluating soil quality and function of desert ecosystem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., He, X., He, C. et al. Spatial dynamics of dark septate endophytes and soil factors in the rhizosphere of Ammopiptanthus mongolicus in Inner Mongolia, China. Symbiosis 65, 75–84 (2015). https://doi.org/10.1007/s13199-015-0322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0322-6

Keywords

Navigation