Skip to main content
Log in

Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Curcumin, a natural polyphenolic compound, offers a wide range of pharmacological benefits such as antioxidant, anti-inflammatory and anti-cancer. The oil-in-water nanoemulsions containing curcumin were obtained by high pressure homogenization and effects of various emulsifiers (Tween-80, lecithin, whey protein isolate and acacia) and different surfactant-to-oil ratios (SOR) on physicochemical characteristics, physical stability and storage stability of curcumin loaded nanoemulsions were evaluated in this study. The result showed that smaller particle size, better physical and storage stabilities and higher curcumin content were found in curcumin loaded nanoemulsions stabilized with Tween-80 and lecithin. Compared with nanoemulsions prepared with lecithin, nanoemulsions fabricated with Tween-80 exhibited better uniformity and distribution as demonstrated by microscopic observations. It was found that SOR was positively correlated with particle size but negatively correlated with curcumin content in the emulsion droplets. Neither the emulsifier nor SOR values were found to have significant effects on zeta-potentials of the droplets. This result implied that curcumin loaded nanoemulsions prepared with Tween-80 and higher SOR values helped curcumin to achieve better physical stability and storage stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas S, Bashari M, Akhtar W, Li WW, Zhang X (2014) Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrason Sonochem 21:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  • Ahmed K, Li Y, McClements DJ, Xiao H (2012) Nanoemulsion-and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem 132:799–807

    Article  CAS  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  • Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 37:142–147

    Article  CAS  Google Scholar 

  • Arshady R (1992) Suspension, emulsion, and dispersion polymerization: a methodological survey. Colloid Polym Sci 270:717–732

    Article  CAS  Google Scholar 

  • Bjerregaard S, Wulf-Andersen L, Stephens RW, Lund LR, Vermehren C, Söderberg I, Frokjaer S (2001) Sustained elevated plasma aprotinin concentration in mice following intraperitoneal injections of w/o emulsions incorporating aprotinin. J Control Release 71:87–98

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, McClements DJ (2016) Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): caseinate, whey protein, lecithin, or tween 80. Food Hydrocoll 61:92–101

    Article  CAS  Google Scholar 

  • Chemtob A, Asua JM (2013) Poly (ε-caprolactone) and cellulose ester hybrid nanoparticles via miniemulsion polymerization. Colloid Polym Sci 291:2503–2514

    Article  CAS  Google Scholar 

  • Dcodhar SD, Sethi R, Srimal RC (2013) Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 138:632

    Google Scholar 

  • Frasch-Melnik S, Norton IT, Spyropoulos F (2010) Fat-crystal stabilised w/o emulsions for controlled salt release. J Food Eng 98:437–442

    Article  CAS  Google Scholar 

  • Hashem MM, Atta AH, Arbid MS, Nada SA, Asaad GF (2010) Immunological studies on amaranth, sunset yellow and curcumin as food colouring agents in albino rats. Food Chem Toxicol 48:1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Huyskens PL, Haulait-Pirson MC (1985) A new expression for the combinatorial entropy of mixing in liquid mixtures. J Mol Liq 31:135–151

    Article  CAS  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  • Iwanaga D, Gray D, Decker EA, Weiss J, McClements DJ (2008) Stabilization of soybean oil bodies using protective pectin coatings formed by electrostatic deposition. J Agric Food Chem 56:2240–2245

    Article  CAS  PubMed  Google Scholar 

  • Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22:1191–1202

    Article  CAS  Google Scholar 

  • Jumaa M, Müller BW (1998) The effect of oil components and homogenization conditions on the physicochemical properties and stability of parenteral fat emulsions. Int J Pharm 163:81–89

    Article  CAS  Google Scholar 

  • Kabalnov A (2001) Ostwald ripening and related phenomena. J Dispers Sci Technol 22:1–12

    Article  CAS  Google Scholar 

  • Kabalnov AS, Shchukin ED (1992) Ostwald ripening theory: applications to fluorocarbon emulsion stability. Adv Colloid Interface Sci 38:69–97

    Article  CAS  Google Scholar 

  • Kaur S, Das M (2011) Functional foods: an overview. Food Sci Biotechnol 20:861–875

    Article  Google Scholar 

  • Kunchandy E, Rao MN (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240

    Article  CAS  Google Scholar 

  • Li Y, Le MS, Xiao H, McClements DJ (2009) Emulsion-based delivery systems for tributyrin, a potential colon cancer preventative agent. J Agric Food Chem 57:9243–9249

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Lin HY, Chen HC, Yu MW, Lee MH (2009) Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions. Food Chem 116:923–928

    Article  CAS  Google Scholar 

  • Liu A, Lou H, Zhao L, Fan P (2006) Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal 40:720–727

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang D, Sun C, McClements DJ, Gao Y (2016) Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: multilayer coatings formed using protein and protein–polyphenol conjugates. Food Chem 205:129–139

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Zeng Q, Tai K, He X, Yao Y, Hong X, Yuan F (2017) Preparation of curcumin-loaded emulsion using high pressure homogenization: impact of oil phase and concentration on physicochemical stability. LWT Food Sci Technol 84:34–46

    Article  CAS  Google Scholar 

  • Mao L, Yang J, Xu D, Yuan F, Gao Y (2010) Effects of homogenization models and emulsifiers on the physicochemical properties of β-carotene nanoemulsions. J Dispers Sci Technol 31:986–993

    Article  CAS  Google Scholar 

  • Mcclements DJ (2007) Critical review of techniques and methodologies for characterization of emulsion stability. Crit Rev Food Sci Nutr 47:611–649

    Article  CAS  PubMed  Google Scholar 

  • McClements DJ (2012) Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci 17:235–245

    Article  CAS  Google Scholar 

  • McClements DJ (2015) Food emulsions: principles, practices, and techniques. CRC Press, Boca Raton

    Book  Google Scholar 

  • McClements DJ, Monahan FJ, Kinsella JE (1993) Disulfide bond formation affects stability of whey protein isolate emulsions. J Food Sci 58:1036–1039

    Article  CAS  Google Scholar 

  • Pathak L, Kanwal A, Agrawal Y (2015) Curcumin loaded self-assembled lipid-biopolymer nanoparticles for functional food applications. J Food Sci Technol 52:6143–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safie NE, Ludin NA, Su’ait M, Hamid NH, Sepeai S, Ibrahim MA, Teridi MA (2015) Preliminary study of natural pigments photochemical properties of Curcuma longa L. and Lawsoniainermis L. as TiO2 photoelectrode sensitizer. Malays J Anal Sci 19:1243–1249

    Google Scholar 

  • Sari TP, Sharma R, Mann B, Kumar R (2013) Process optimization for the production of nanoencapsulated curcumin and analysis for physicochemical characteristics and antioxidant mechanism. Int J Biotechnol Bioeng Res 4:581–586

    Google Scholar 

  • Schramm LL (1992) Fundamentals and applications in the petroleum industry. Adv Chem Ser 231:3–24

    Google Scholar 

  • Schubert H, Engel R (2004) Product and formulation engineering of emulsions. Chem Eng Res Des 82:1137–1143

    Article  CAS  Google Scholar 

  • Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230

    Article  CAS  PubMed  Google Scholar 

  • Sheikhzadeh S, Alizadeh M, Rezazad M, Hamishehkar H (2016) Application of response surface methodology and spectroscopic approach for investigating of curcumin nanoencapsulation using natural biopolymers and nonionic surfactant. J Food Sci Technol 53:3904–3915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Yang S, Dai L, Chen S, Gao Y (2017) Quercetagetin-loaded zein-propylene glycol alginate composite particles induced by calcium ions: structural comparison between colloidal dispersions and lyophilized powders after in vitro simulated gastraintestinal digestion. J Funct Foods 37:25–48

    Article  CAS  Google Scholar 

  • Tan CP, Nakajima M (2005) β-carotene nanodispersions: preparation, characterization and stability evaluation. Food Chem 92:661–671

    Article  CAS  Google Scholar 

  • Tan C, Feng B, Zhang X, Xia W, Xia S (2016a) Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll 52:774–784

    Article  CAS  Google Scholar 

  • Tan C, Feng B, Zhang X, Xia W, Xia S (2016b) Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll 52:774–784

    Article  CAS  Google Scholar 

  • Tønnesen HH, Másson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244:127–135

    Article  PubMed  Google Scholar 

  • Walstra P, Vliet TV (1996) Dispersed systems: basic considerations. Food Sci Technol 95–156

  • Weisberg SP, Leibel R, Tortoriello DV (2008) Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocr 149:3549–3558

    Article  CAS  Google Scholar 

  • Xie Y, Zhao QY, Li HY, Zhou X, Liu Y, Zhang H (2014) Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol Biochem Behav 126:181–186

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Aihemaiti Z, Cao Y, Teng C, Li X (2016) Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan. Food Chem 202:156–164

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Leser ME, Sher AA, McClements DJ (2013) Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocoll 30:589–596

    Article  CAS  Google Scholar 

  • Young NA, Bruss MS, Gardner M, Willis WL, Mo X, Valiente GR et al (2014) Oral administration of nano-emulsion curcumin in mice suppresses inflammatory-induced nfκb signaling and macrophage migration. Plos One 9(11):e111559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan F, Gao Y, Decker EA, McClements DJ (2013) Modulation of physicochemical properties of emulsified lipids by chitosan addition. J Food Eng 114:1–7

    Article  CAS  Google Scholar 

  • Züge LCB, Haminiuk CWI, Maciel GM, Silveira JLM (2013) Catastrophic inversion and rheological behavior in soy lecithin and tween 80 based food emulsions. J Food Eng 116:72–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support by the National Key R&D Program of China (No. 2016YFD0400804). The authors are grateful to Dr. Gao and Dr. Mao for providing assistance in improving the language of the articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Yuan.

Ethics declarations

Conflict of interest

The author declares that they no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Zeng, Q., Tai, K. et al. Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios. J Food Sci Technol 55, 3485–3497 (2018). https://doi.org/10.1007/s13197-018-3273-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3273-0

Keywords

Navigation