Skip to main content

Advertisement

Log in

Curcumin loaded self assembled lipid-biopolymer nanoparticles for functional food applications

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The supramolecular nano-assemblies formed by electrostatic interactions of two oppositely charged lipid and polymer have been made and used as nanocarriers for curcumin to address its bioavailability and solubility issues. These curcumin encapsulated nano-supramolecular assemblies were characterized with respect to their size (dynamic light scattering), morphology (TEM, SEM), zeta potential (Laser Doppler Velocimetry), encapsulation efficiency (EE), curcumin loading (CL) etc. Stability of the nano-assemblies was assessed at different storage times as a function of varying pH and temperature. The physicochemical characterization of nano-assemblies was performed using Fourier Transform Infra Red Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). The in-vitro antioxidant lipid peroxidation (TBARS), radical scavenging (DPPH, NO, H2O2, reducing power) activity assays of powdered curcumin and nano-encapsulated curcumin were performed. It was found that nano-encapsulated curcumin were roughly spherical in shape, presented high positive zeta potential (>30 mV), monodisperse (polydispersity index <0.3), amorphous in nature, stable in the pH range of 2–6 and have enhanced antioxidant potency in comparison to crystalline curcumin in aqueous media. In conclusion, the curcumin encapsulated nanocarriers system has great potential as functional food ingredient of natural origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ak T, Gulçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  CAS  Google Scholar 

  • Anitha A, Deepagan VG, Divya Rani VV et al (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym 84:1158–1164

    Article  CAS  Google Scholar 

  • Anon (1962) pH values of food products. Food Eng 34:98–99

    Google Scholar 

  • Barthelemy S, Vergnes L, Moynier M et al (1998) Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol 149:43–52

    Article  CAS  Google Scholar 

  • Borra SK, Gurumurthy P, Mahendra J (2013) Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. J Med Plant Res 7:2680–2690. doi:10.5897/JMPR2013.5094

    CAS  Google Scholar 

  • Brannan RG, Connolly BJ, Decker EA (2001) Peroxynitrite: a potential initiator of lipid oxidation in food. Trends Food Sci Technol 12:164–173

    Article  CAS  Google Scholar 

  • Brugnerotto J, Lizardi J, Goycoolea FM et al (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580

    Article  CAS  Google Scholar 

  • Bursal E, Köksal E, Gulçin I et al (2013) Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Res Int 51:66–74

    Article  CAS  Google Scholar 

  • Champer J, Patel J, Fernando N et al (2013) Chitosan against cutaneous pathogens. AMB Express 3:37. doi:10.1186/2191-0855-3-37

    Article  Google Scholar 

  • Chattopadhyay I, Biswas K, Bandyopadhyay U et al (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87:44–53

    CAS  Google Scholar 

  • Chien PJ, Sheu F, Huang WT, Su MS (2007) Effect of mol weight of chitosans on their antioxidative activities in apple juice. Food Chem 102:1192–1198

    Article  CAS  Google Scholar 

  • Delgado-vargas F, Paredes-López O (2003) Natural colorants for food and nutraceutical uses. CRC press LLC

  • Duclairoir C, Orecchioni AM, Depraetere P et al (2002) α-Tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles. J Microencapsul 19:53–60

    Article  CAS  Google Scholar 

  • Dutta P, Dutta J, Tripathi V (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31. doi:10.1002/chin.200727270

    CAS  Google Scholar 

  • Gulcin I (2011) Antioxidant activity of food constituents-an overview. Arch Toxicol 86:345–396

    Article  Google Scholar 

  • Gulcin I, Elmasta M, Aboul-Enein HY et al (2012) Antioxidant activity of clove oil-A powerful antioxidant source. Arab J Chem 5:489–499

    Article  CAS  Google Scholar 

  • Gunes H, Gulen D, Mutlu R et al (2013) Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health. doi:10.1177/0748233713498458

    Google Scholar 

  • Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12

    Article  CAS  Google Scholar 

  • Hellhammer J, Fries E, Buss C et al (2004) Effects of soy lecithin phosphatidic acid and phosphatidylserine complex (PAS) on the endocrine and psychological responses to mental stress. Stress (Amsterdam, Netherlands) 7:119–126. doi:10.1080/10253890410001728379

    Article  CAS  Google Scholar 

  • Hsieh RJ, Kinsella JE (1989) Oxidation of polyunsaturated fatty acids: mechanisms, products, and inhibition with emphasis on fish. Adv Food Nutr Res 33:233–341

    Article  CAS  Google Scholar 

  • Kanner J, German JB, Kinsella JE (1987) Initiation of lipid peroxidation in biological systems. Crit Rev Food Sci Nutr 25:317–364. doi:10.1080/10408398709527457

    Article  CAS  Google Scholar 

  • Kant V, Gopal A, Pathak NN et al (2014) Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol 20:322–30. doi:10.1016/j.intimp.2014.03.009

    Article  CAS  Google Scholar 

  • Ketron AC, Osheroff N (2014) Phytochemicals as anticancer and chemopreventive topoisomerase II poisons. Phytochem Rev 13:19–35

    Article  CAS  Google Scholar 

  • Khalil FA, Ali NH (2011) Protective effect of dietary antioxidants curcumin, vitamin C and Ginko biloba on oxidative stress in colonic rats induced by butylated hydroxyanisol. Aust J Basic Appl Sci 5:1489–1495

    CAS  Google Scholar 

  • Kumar M, Ahuja M, Sharma SK (2008) Hepatoprotective study of curcumin-soya lecithin complex. Sci Pharm 76:761–774

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK, Pakade YB et al (2010) Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B: Biointerfaces 80:184–192

    Article  CAS  Google Scholar 

  • Kunchandy E, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240

    Article  CAS  Google Scholar 

  • Lazar AN, Mourtas S, Youssef I et al (2013) Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: possible applications to alzheimer disease. Nanomedicine: Nanotechnol, Biol, Med 9:712–721

    Article  CAS  Google Scholar 

  • Lee DS, Je JY (2013) Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J Agric Food Chem 61:6574–9. doi:10.1021/jf401254g

    Article  CAS  Google Scholar 

  • Love JD, Pearson a M (1974) Metmyoglobin and nonheme iron as prooxidants in cooked meat. J Agric Food Chem 22:1032–4

    Article  CAS  Google Scholar 

  • Mangolim CS, Moriwaki C, Nogueira AC et al (2014) Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem 153:361–370

    Article  CAS  Google Scholar 

  • Mastellone I, Polichetti E, Grès S et al (2000) Dietary soybean phosphatidylcholines lower lipidemia: mechanisms at the levels of intestine, endothelial cell, and hepato-biliary axis. J Nutri Biochem 11:461–466

    Article  CAS  Google Scholar 

  • Miranda DTSZ, Batista VG, Grando FCC et al (2008) Soy lecithin supplementation alters macrophage phagocytosis and lymphocyte response to concanavalin A: a study in alloxan-induced diabetic rats. Cell Biochem Funct 26:859–865

    Article  CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  Google Scholar 

  • Ogawa S, Decker EA, McClements DJ (2004) Production and characterization of O/W emulsions containing droplets stabilized by lecithin-chitosan-pectin multilayered membranes. J Agric Food Chem 52:3595–3600

    Article  CAS  Google Scholar 

  • Oke M, Jacob JK, Paliyath G (2010) Effect of soy lecithin in enhancing fruit juice/sauce quality. Food Res Int 43:232–240

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on product of browning reaction prepared from glucosamine. Jpn J Nutr 44:778–84

    Article  Google Scholar 

  • Park Y, Kim M-H, Park S-C et al (2008) Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol 18:1729–1734

    CAS  Google Scholar 

  • Pathak L, Agrawal Y, Dhir A (2013) Natural polyphenols in the management of major depression. Expert Opin Invest Drugs 22:863–80. doi:10.1517/13543784.2013.794783

    Article  CAS  Google Scholar 

  • Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008

    Article  CAS  Google Scholar 

  • Sadzuka Y, Nagamine M, Toyooka T et al (2012) Beneficial effects of curcumin on antitumor activity and adverse reactions of doxorubicin. Int J Pharm 432:42–49

    Article  CAS  Google Scholar 

  • Santini A, Romano R, Meca G et al (2014) Antioxidant activity and quality of apple juices and puree after in vitro digestion. J Food Res 3:41–50

    CAS  Google Scholar 

  • Schaffazick SR, Pohlmann AR, de Cordova CA et al (2005) Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int J Pharm 289:209–213

    Article  CAS  Google Scholar 

  • Shahidi F (1997) Natural antioxidants: chemistry, health effects and applications. American Oil Chemists’ Society Press, Champaign

    Google Scholar 

  • Sharma M (2012) Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis. Frontiers in Bioscience E4:1195. doi: 10.2741/E451

  • Singh N, Khullar N, Kakkar V, Kaur IP (2014) Attenuation of carbon tetrachloride-induced hepatic injury with curcumin-loaded solid lipid nanoparticles. BioDrugs: Clin Immunotherapeutics, Biopharmaceuticals Gene Therapy 28:297–312. doi:10.1007/s40259-014-0086-1

    Article  CAS  Google Scholar 

  • Sonvico F, Cagnani A, Rossi A et al (2006) Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int J Pharm 324:67–73

    Article  CAS  Google Scholar 

  • Sreejayan, Rao MN (1997) Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49:105–107. doi:10.1111/j.2042-7158.1997.tb06761.x

    Article  CAS  Google Scholar 

  • St Angelo AJ (1996) Lipid oxidation on foods. Crit Rev Food Sci Nutr 36:175–224. doi:10.1080/10408399609527723

    Article  CAS  Google Scholar 

  • Stoilova I, Gargova S, Stoyanova A, Ho L (2005) Antimicrobial and antioxidant activity of the polyphenol mangiferin. Herba polonica 51:37–43

    CAS  Google Scholar 

  • Tarladgis BG, Watts BM, Younathan MT, Dugan L (1960) A distillation method for the quantitative determination of malonaldehyde in rancid foods. J Am Oil Chem Soc 37:44–48

    Article  CAS  Google Scholar 

  • Tiwari SK, Agarwal S, Seth B et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8:76–103

    Article  CAS  Google Scholar 

  • Tonnesen HH, Karlsen J (1985) Studies on curcumin and curcuminoids. Z Lebensm Unters Forsch 180:402404

    Article  Google Scholar 

  • Ueda Y, Wang M-F, Irei AV et al (2011) Effect of dietary lipids on longevity and memory in the SAMP8 mice. J Nutr Sci Vitaminol 57:36–41

    Article  CAS  Google Scholar 

  • van Bracht E, Versteegden LRM, Stolle S, Verdurmen WPR, Woestenenk R, Raavé R, Hafmans T, Oosterwijk E, Brock R, van Kuppevelt TH, Daamen WF (2014) Enhanced cellular uptake of albumin-based lyophilisomes when functionalized with cell-penetrating peptide TAT in HeLa Cells. PLoS One 9(11):e110813

  • Vasilatos GC, Savvaidis IN (2013) Chitosan or rosemary oil treatments, singly or combined to increase turkey meat shelf-life. Int J Food Microbiol 166:54–58

    Article  CAS  Google Scholar 

  • Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorganic Med Chem Letters 11:1699–1701

    Article  CAS  Google Scholar 

  • Yao H, Xu W, Shi X, Zhang Z (2011) Dietary flavonoids as cancer prevention agents. J Environ Sci Health Part C, Environ Carcinog Ecotoxicol Rev 29:1–31. doi:10.1080/10590501.2011.551317

    Article  Google Scholar 

  • Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74:840–844

    Article  CAS  Google Scholar 

  • Yen FL, Wu TH, Zeng CW T, Lin LT, Lin CC (2010) Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agric Food Chem 58:7376–7382

    Article  CAS  Google Scholar 

  • Zhang D-W, Fu M, Gao S-H, Liu JL (2013) Curcumin and Diabetes: A Systematic Review. Evidence-based complementary and alternative medicine: eCAM 2013:636053. doi: 10.1155/2013/636053

Download references

Acknowledgments

LPP and YKA would like to acknowledge Gujarat council on science and technology (GUJCOST) for research grant to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokesh Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, L., Kanwal, A. & Agrawal, Y. Curcumin loaded self assembled lipid-biopolymer nanoparticles for functional food applications. J Food Sci Technol 52, 6143–6156 (2015). https://doi.org/10.1007/s13197-015-1742-2

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1742-2

Keywords

Navigation