Skip to main content

Advertisement

Log in

Nanotechnology: a future tool to improve quality and safety in meat industry

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Nanotechnology refers to the new aspect of science modifies its physical, chemical and biological properties leading to new applications or enhanced utility. Keeping the pace with other industries, the meat industry has adopted the new technology in a range of applications to improve the quality and safety of products. The potential applications include the improvement in the tastes, texture, flavor, production of low fat and salt products, enhanced nutrient absorption, improved packaging techniques and better pathogen detection system. However some safety issues need to be addressed before taking a ride on the technology at the full throttle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdou ES, Osheba AS, Sorour MA (2012) Effect of chitosan and chitosan-nanoparticles as active coating on microbiological characteristics of fish fingers. Intern J Appl Sci Technol 2:158–169

    Google Scholar 

  • Aguilera JM (2005) Why food microstructure? J Food Eng 67(1–2):3–11

    Article  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng Rep 28(1–2):1–63

    Article  Google Scholar 

  • Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety – review. Afr J Food Agric Nutr Dev 10(6):2719–2739

    CAS  Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    Article  CAS  Google Scholar 

  • Azeredo MCH (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  Google Scholar 

  • Azeredo MCH (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30:56–69

    Article  Google Scholar 

  • Borm P, Klaessing FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part 5: role of dissolution in biological fate and effects of nanoscale particles. J Toxicol Sci 90:23–32

    Article  CAS  Google Scholar 

  • Boskovic M, Baltic ZM, Ivanovic J, Duric J, Loncina J, Dokmanovic M, Markovic R (2013) Use of essential oils in order to prevent food borne illness caused by pathogens in meat. Tehnologija Mesa 54(1):14–21

    Article  Google Scholar 

  • Brody AL (2006) Nano and food packaging technologies converge. Food Technol 60:92–94

    Google Scholar 

  • Brody AL, Bugusu B, Han JH, Koelsch Sand C, McHugh TH (2008) Innovative food packaging. J Food Sci 73(8):107–117

    Article  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    Article  CAS  Google Scholar 

  • Cabedo L, Feijoo JL, Villanueva MP, Lagaron JM, Gimenez E (2006) Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. Macromol Symp 233:191–197

    Article  CAS  Google Scholar 

  • Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280

    Article  CAS  Google Scholar 

  • Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem, Anal Control, Expo Risk Assess 25(3):241–258

    Article  CAS  Google Scholar 

  • Chen MA, von Mikecz (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305:51–62

    Article  CAS  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. J Food Technol 60(3):30–36

    CAS  Google Scholar 

  • Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19

    Article  CAS  Google Scholar 

  • Coles D, Frewer LJ (2013) Nanotechnology applied to European food production a review of ethical and regulatory issues. Trends Food Sci Technol 34:42–43

    Article  Google Scholar 

  • Cubukcu M, Timur S, Anik U (2007) Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta 74:434–439

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry – recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    Article  CAS  Google Scholar 

  • Dickinson E, Van Vliet T (2003) Food colloids biopolymers and materials. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  • Dingman J (2008) Nanotechnology: its impact on food safety. J Environ Health 70:47–50

    Google Scholar 

  • Doyle ME 2006.Nanotechnology: ABrief Literature Review. Food Research Institute Briefings, University of Wisconsin-Madison. 10 pages. Available at: http://www.wisc.edu/fri

  • Duncan VT (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  Google Scholar 

  • EFSA (2008) 21st list of substances for food contact materials, scientific opinion of the panel on food contact materials, enzymes, flavourings and processing aids (CEF) (question no EFSA-Q-2005- 151, EFSA-Q-2006-324, EFSA-Q-2006-323). EFSA J 888-890:1–14

    Google Scholar 

  • Fernandez A, Picouet P, Lloret E (2010) Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. J Food Prot 73(12):2263–2269

    CAS  Google Scholar 

  • Fernnandez A, Soriano E, Loopez-Carballo G, Picouet P, Lloret E, Gavara R (2009) Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Res Int 42(8):1105–1112

    Article  Google Scholar 

  • Graveland-Bikker JF, de Kruif CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17:196–203

    Article  CAS  Google Scholar 

  • Hall RH (2002) Biosensor technologies for detecting microbiological food borne hazards. Microbes Infect 4:425–432

    Article  Google Scholar 

  • Helmke BP, Minerick AR (2006) Designing a Nano-interface in a microfluidic chip to probe living cells: challenges and perspectives. Proc Natl Acad Sci 103:6419–6424

    Article  CAS  Google Scholar 

  • Iwaki T, Kakihara Y, Toda T, Abdullah M, Okuyama K (2003) Preparation of high coercivity magnetic FePt nanoparticles by liquid process. J Appl Phys 94:6807–6811

    Article  CAS  Google Scholar 

  • Jasinska M, Dmytrow I, Mituniewicz-Malek A, Wąsik K (2010) Cow feeding system versus milk utility for yoghurt manufacture. Acta Sci Pol Technol Aliment 9(2):189–199

    CAS  Google Scholar 

  • Joe MM, Chauhan PS, Bradeeba K, Shagol C, Sivakumaar PK, Sa T (2012) Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of indo-Pacific king mackerel (scomberomorus guttatus) steaks stored at 20 °C. Food Control 23:564–570

    Article  CAS  Google Scholar 

  • Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62:408–423

    Article  CAS  Google Scholar 

  • Khosravi-Darani K, Pardakhty A, Honarpisheh H, Rao VSM, Mozafari MR (2007) The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron 38:804–818

    Article  CAS  Google Scholar 

  • Kikuo O and Wuled L 2004. Nanoparticle preparation and its application- A nanotechnology particle project in Japan proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04) 0–7695-2189-4/04 $20.00 © IEEE.

  • Kumar CSSR (ed) (2006) Nanomaterials for biosensors. Wiley-VCH Weinheim, Germany

    Google Scholar 

  • Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E (2005) Improving packaged food quality and safety. Part 2: nanocomposites. Food Addit Contam Part A 23(10):994–998

    Article  Google Scholar 

  • Lambert G, Fattal E, Couvreur P (2001) Nanoparticulate system for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 47:99–112

    Article  CAS  Google Scholar 

  • Lawton JW (2002) Zein: a history of processing and use. Cereal Chem 79:1–18

    Article  CAS  Google Scholar 

  • Linscott AJ (2011) Food-borne illnesses. Clin Microbiol Newsl 33:41–45

    Article  Google Scholar 

  • Loncina J, Ivanovic J, Baltic T, Dokmanovic M, Duric J, Boskovic M, Baltic ZM (2013) Active system packaging of meat and meat products. Vet J Republic Srpska 13(1):5–16

    Google Scholar 

  • Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575

    Article  CAS  Google Scholar 

  • Luoma SN 2008. Silver Nanotechnologies and the Environment: Old Problems or New Challenges? Woodrow Wilson International Center for Scholars: Project of Emerging Nanotechnologies, Washington, DC, <www.nanotechproject.org>.

  • Malheiros PS, Daroit DJ, Brandelli A (2010) Food application of liposomes-encapsulated antimicrobial peptides. Trends Food Sci Technol 21:284–292

    Article  Google Scholar 

  • Mao X, Yang L, Su XL, Li Y (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens Bioelectron 21:1178–1185

    Article  CAS  Google Scholar 

  • Maynard AD (2006) Nanotechnology: assessing the risks. NanoToday 1(2):22–33

    Article  Google Scholar 

  • Maynard A 2010. Presentation: nanotechnology and human health impact. A framework for strategic research. Available from http://www.nanotechproject.org/process/files/2741/18_nanotechnologyhumanhealthimpactframeworkstrategicresearch.pdf.

  • McClements DJ (2005) Food emulsions: principles, practice and techniques, 2nd edn. CRC Press, Boca Raton, p. 609

    Google Scholar 

  • Milan BZ, Mariza B, Jelena I, Mariza D, Jelena J, Jasna L, Tatjana B (2013) Nanotechnology and its potential application in meat industry. Tech Mess 54(2):168–175

    CAS  Google Scholar 

  • Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors Actuators B Chem 136(2):344–349

    Article  CAS  Google Scholar 

  • Nanoposts Report (2008) Nanotechnology and consumer goods-market and applications to 2015. Nanoposts.com

  • Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H (2010) Food-borne diseases. The challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15

    Article  Google Scholar 

  • Ozimek L, Pospiech E, Narine S (2010) Nanotechnologies in food and meat processing. ACTA Scientiarum Polonorum Technologia Alimentaria 9(4):401–412

    CAS  Google Scholar 

  • Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1(06):228–234

    Google Scholar 

  • Panea B, Ripoll G, Gonzalez J, Fernandez-Cuello A, Alberti P (2013) Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J Food Eng 123:104–112

    Article  Google Scholar 

  • Rai M, Gade A, Gaikwad S, Marcato PD, Duran N (2012) Biomedical applications of nonobiosensors: the state of the art. J Braz Chem Soc 23:14–24

    CAS  Google Scholar 

  • Rashidi L, Kashravi-Darani K (2011) The application of nanotechnology in food industry. Crit Rev Food Sci Nutr 51:723–730

    Article  CAS  Google Scholar 

  • Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433

    Article  CAS  Google Scholar 

  • Roco MC, Mirkin CA, Hersam MC (Eds.) 2010. Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook, World Technology Evaluation Center (WTEC) and the National Science Foundation (NSF), Springer, http://www.wtec.org/nano2/Nanotechnology_Research_Directions

  • Schaefer M (2005) Double tightness. Lebensmittelchemie 37:52–55

    Google Scholar 

  • Shan D, Wang Y, Xue H, Cosnier S (2009) Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. Sensors Actuators B Chem 136(2):510–515

    Article  CAS  Google Scholar 

  • Shefer A and Shefer S 2003. Biodegradable bio-adhesive controlled release system of nano-particles for food products, U.S. patent 6565873BI.

  • Shegokar R, Muller RH (2010) Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 399(1–2):129–139

    Article  CAS  Google Scholar 

  • Shibata T (2002) Method for producing green tea in microfine powder. Patent US6416803B1, United States

    Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  • Simon P, Chaudhry Q, Bakos D (2008) Migration of engineered nanoparticles from polymer packaging to food : physicochemical view. J Food Nutr Res 47(3):105–113

    CAS  Google Scholar 

  • Sinha RS, Yamada K, Okamoto M, Ueda K (2002) Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2(10):1093–1096

    Article  Google Scholar 

  • Sofos JN (2008) Challenges to meat safety in the 21st century. Meat Sci 78:3–13

    Article  Google Scholar 

  • Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, Levy RJ (1997) Formulation and characterization of biodegradables nanoparticles for intravascular local drug delivery. J Control Release 43:197–212

    Article  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  Google Scholar 

  • Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78

    Article  CAS  Google Scholar 

  • Tice TR, Gilley RM (1985) Preparation of injectable controlled release microcapsules by solvent- evaporation process. J Control Release 2:343–352

    Article  CAS  Google Scholar 

  • Velebit B, Petrovic Z (2012) Antimicrobial packaging in food industry. Tehnologija Mesa 53:71–79

    Article  CAS  Google Scholar 

  • Villamizar R, Maroto A, Xavier Rius F, Inza I, Figueras M (2008) Fast detection of salmonella infantis with carbon analytical nanotechnology for food analysis 17 nanotube field effect transistors. Biosens Bioelectron 24:279–283

    Article  CAS  Google Scholar 

  • Weiss J, McClements DJ (2002) Mass transport phenomena in emulsions containing surfactants. In: Somasundaran P, Hubbard A (eds) In: Encyclopedia of Surface and Colloid Science. Marcel Dekker, New York, pp. 3123–3151

    Google Scholar 

  • Weiss J, Takhistov P, Mc Clements J (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  • Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  CAS  Google Scholar 

  • Yusop SM, O’Sullivan MG, Preuß M, Weber H, Kerry JF, Kerry JP (2012) Assessment of nanoparticle paprika oleoresin on marinating performance and sensory acceptance of poultry meat. LWT Food Sci Technol 46:349–355

    Article  CAS  Google Scholar 

  • Zhao HQ, Lin L, Li JR, Tang JA, Duan MX, Jiang L (2001) DNA biosensor with high sensitivity amplified by gold nanoparticles. J Nanoparticle Res 3:321–323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Jairath, G. & Ahlawat, S.S. Nanotechnology: a future tool to improve quality and safety in meat industry. J Food Sci Technol 53, 1739–1749 (2016). https://doi.org/10.1007/s13197-015-2090-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-2090-y

Keywords

Navigation