Skip to main content

Nanotechnology in Food Science

  • Chapter
  • First Online:
Bio-Nano Interface

Abstract

The approach of nanotechnology has made rapid changes in different fields of science. In food science, this advanced technology improves the system of processing, packaging, storage, transport and further operation of investment and market value. Nanotechnology in food science results in an advantage over conventional and other methods of food processing. The nano based particles and materials increase mechanical strength, barrier properties, help in the detection of pathogens in food and alert the status of food. Its contribution to the food industry is extending globally. Its main role in the food industry also includes the extension of shelf life; reduce deterioration, maintaining quality, and improvement in food value addition. With this novel technology, we expect to supply and fulfil the food requirements of hunger mouths occurring due to the increase in population. It will reduce the wastage of post-harvest loss of agriculture and horticulture produces. Soon in the future, we believe that the rapid development of this technology will handle the safeguarding of food and plays a pivotal role in the development of food science and its related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Addo NS, Thomas TA, Begley TH, Noonan GO et al (2015) Characterisation and potential migration of silver nanoparticles from commercially available polymeric food contact materials. Food Addit Contam Part A 32(6):1003–1011

    Google Scholar 

  • Anjum S, Abbasi BH, Shinwari ZK et al (2016) Plant-mediated green synthesis of silver nanoparticles for biomedical applications: challenges and opportunities. Pak J Bot 48(4):1731–1760

    CAS  Google Scholar 

  • Baeumner A (2004) Nanosensors identify pathogens in food. Food Technol 58(8):52–56

    Google Scholar 

  • Bradley EL, Castle L, Chaudhry Q et al (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:603–610

    Google Scholar 

  • Cha D, Chinnan M (2004) Biopolymer based antimicrobial packaging. Crit Rev Food Sci Nutr 44(4):223–237

    CAS  PubMed  Google Scholar 

  • Chen S, Ma L, Yuan R, Chai Y, Xiang Y, Wang C et al (2011) Electrochemical sensor based on Prussian blue nanorods and gold nanochains for the determination of H2O2. Eur Food Res Technol 232:87–95

    CAS  Google Scholar 

  • Cheng Q, Li C, Pavlinek V, Saha P, Wang H et al (2006) Surface- modified antibacterial TiO2/ag + nanoparticles: preparation and properties. Appl Surf Sci 252:4154–4160

    CAS  Google Scholar 

  • Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G et al (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11(1):40

    PubMed  PubMed Central  Google Scholar 

  • Cushen N, Kerry J, Morris M, Cruz-Romero M, Cummins E et al (2012) Nanotechnologies in the food industry- recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A et al (2015) Nanotechnology in agrofood: from field to plate. Food Res Int 69:381–400

    Google Scholar 

  • Elegbede JA, Lateef A (2019) Green nanotechnology in Nigeria: the research landscape, challenges and prospects. Ann Sci Technol 4(2):6–38

    Google Scholar 

  • Eric Drexler K (1986) Engines of creation: the coming era of nanotechnology. Anchor Book, New York, pp 1–10

    Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C et al (2013) Nanoencapsulation techniques for bioactive components. Food Bioprocess Technol 6:628–647

    CAS  Google Scholar 

  • Feynman RP (1995) No ordinary genius: the illustrated Richard Feynman. WW Norton & Company, New York

    Google Scholar 

  • Frances SL, Chris RT, Lisa CS, Kim ES, Yura S, Joel PG et al (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377(3):469–477

    Google Scholar 

  • Gálvez A, Abriouel H, López RL, Omar NB et al (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120(1–2):51–70

    PubMed  Google Scholar 

  • Garcia M, Forbe T, Gonzalez E et al (2010) Potential applications of nanotechnology in the agro food sector. Ciệncia e Tecnologia de Alimentos 30(3):573–581

    Google Scholar 

  • Guhan Nath S, Aaron SI, Raj AAS, Ranganathan TV et al (2014) Recent innovations in nanotechnology in food processing and its various applications–a review. Int J Pharm Sci Rev Res 29(2):116–124

    Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L et al (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518

    PubMed  Google Scholar 

  • Jin H, Xia F, Jiang C, Zhao Y, Lin HE et al (2009) Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical anti solvent. Chinese J Chem Eng 17(4):672–677

    CAS  Google Scholar 

  • Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I et al (2005) Experimental trends in polymer nanocomposites. Mater Sci Eng A 393(1–2):1–11

    Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food: A nano forum report, Institute of nanotechnology. http://www.nanoforum.org

  • Lateef A, Elegbede JA, Akinola PO, Ajayi VA et al (2019) Biomedical applications of green synthesized-metallic nanoparticles: a review. Pan Afr J Life Sci 3:157–182

    Google Scholar 

  • Law JWF, Ab Mutalib NS, Chan KG, Lee LH et al (2015) Rapid methods for the detection of food borne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770

    PubMed  PubMed Central  Google Scholar 

  • Le Guével X (2017) Overview of inorganic nanoparticles for food science applications. In: Nanotechnology in agriculture and food science. Wiley, Hoboken, NJ, pp 197–208

    Google Scholar 

  • Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q et al (2009) Effect of nano packing on preservation quality of Chinese jujube. Food Chem 114(2):547–552

    CAS  Google Scholar 

  • McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P et al (2016) The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): state of the science and knowledge gaps. NanoImpact 3:47–57

    PubMed  Google Scholar 

  • McClements DJ, Rao J (2011) Food grade nanoemulsions: formulation, fabrication, properties, performance, biological fate and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330

    CAS  PubMed  Google Scholar 

  • Medeiros BGDS, Souza MP, Pinheiro AC, Bourbon AI, Cerqueira MA, Vicente AA et al (2014) Physical characterisation of an alginate/lysozyme nano laminate coating and its evaluation on ‘Coalho’ cheese shelf life. Food Biopro Technology 7:1088–1098

    CAS  Google Scholar 

  • Moore S (1999) Nanocomposite achieves exceptional barrier in films. Mod Plast 76(2):31–32

    Google Scholar 

  • Oehlke K, Adamiuk M, Behsnilian D, Graf V, Mayer ME, Walz E, Greiner R et al (2014) Potential bioavailability enhancement of bioactive compounds using food grade engineered nanomaterials. Food Funct 5:1341–1359

    CAS  PubMed  Google Scholar 

  • Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS et al (2016) Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus Safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans Nanobiosci 15(5):433–442

    Google Scholar 

  • Panda MK, Panda SK, Singh YD, Jit BP, Behara RK, Dhal NK (2020a) Role of nanoparticles and nanomaterials in drug delivery: an overview. In: Advances in pharmaceutical biotechnology. Springer, Singapore, pp 247–265

    Google Scholar 

  • Panda MK, Singh YD, Behera RK, Dhal NK (2020b) Biosynthesis of nanoparticles and their potential application in food and agricultural sector. In: Green nanoparticles. Springer, Cham, pp 213–225

    Google Scholar 

  • Pinto RJB, Daina S, Sadocco P, Neto CP, Trindade T et al (2013) Antibacterial activity of nanocomposites of copper and cellulose. Biomed Res Int 6:280512. https://doi.org/10.1155/2013/280512

    Article  CAS  Google Scholar 

  • Ponce AG, Roura SI, Del Valle CE, Moreira MR et al (2008) Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Post-Harvest Biol Tec 49:249–300

    Google Scholar 

  • Pradhan N, Singh S, Ojha N, Shrivastava S, Barla A, Rai V, Bose S et al (2015) Facets of nanotechnology as seen in food processing, packaging and preservation industry. Biomed Res Int 2015:365672

    PubMed  PubMed Central  Google Scholar 

  • Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow Division of genetics IARI, New Delhi

    Google Scholar 

  • Predicala B (2009) Nanotechnology: potential for agriculture. Prairie swine Centre INC University of Saskatchewan Saskatoon SK 123-13

    Google Scholar 

  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S et al (2016) Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol 42(1):46–56

    CAS  PubMed  Google Scholar 

  • Rai M, Gade A, Gaikwad S, Marcato PD, Durán N et al (2012) Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc 23(1):14–24

    CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A et al (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464

    Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F et al (2006) Nanoencapsulation I: methods for preparation of drug loaded polymeric nanoparticles. Nanomedicine 2(1):8–21

    CAS  PubMed  Google Scholar 

  • Reza MM, Johnson C, Hatziantoniou S, Demetzos C et al (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18(4):309–327

    Google Scholar 

  • Rhim JW (2004) Increase in water vapour barrier property of biopolymer based edible films and coatings by compositing with lipid materials. J Food Sci Biotechnol 13(4):528–535

    CAS  Google Scholar 

  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E et al (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082

    CAS  PubMed  Google Scholar 

  • Salehi B, Prado-Audelo D, María L, Cortés H, Leyva-Gómez G, Stojanović-Radić Z et al (2020) Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases. J Clin Med 9(3):746

    CAS  PubMed Central  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microb Method 54:117–182

    Google Scholar 

  • Sekhon BS (2010) Food nanotechnology- an overview. Nanotechnol Sci Appl 3:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh YD, Ningthoujam R, Panda MK, Jena B, Babu PJ, Mishra AK (2021) Insight from Nanomaterials and Nanotechnology towards covid-19. Sens Int 100099

    Google Scholar 

  • Sinha S, Pan I, Chanda P, Sen SK et al (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Soares NFF, Silva CAS, Santiago-silva P, Espitia PJP, Goncalves MPJC, Lopez MJG et al (2009) Active and intelligent packaging for milk and milk products. In: Engineering aspects of milk and dairy products. Routledge, London, pp 155–174

    Google Scholar 

  • Solans C, Izquierdo PJ, Nolla J, Azemar N, Garcia-Celma MJ et al (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10(3–4):102–110

    CAS  Google Scholar 

  • Sonkaria S, Hoon SA, Khare V et al (2012) Nanotechnology and its impact on food and nutrition. Recent Pat Food Nutr Agric 4(1):8–18

    CAS  PubMed  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    CAS  PubMed  Google Scholar 

  • Subramanian A (2006) A mixed self assembled monolayer based surface Plasmon immunosensor for detection of E. coli 0157H7. Biosens Bioelectron 7:998–1006

    Google Scholar 

  • Tan H, Ma R, Lin C, Liu Z, Tang T et al (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopaedics. Int J Mol Sci 14:1854–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Sauceda JC, Lin Z, Ott S, Basova E, Goryacheva I, Biselli S, Lin J, Niessner R, Knopp D et al (2009) Magnetic nano gold microspheres based lateral form immunodipstick for rapid detection of alphatoxin B2 in the food. Biosens Bioelectron 25:514–518

    CAS  PubMed  Google Scholar 

  • Wang L, Luo J, Shan S, Crew E, Yin J, Zhong C-J, Wallek B, Wong SS et al (2011) Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal Chem 83:8688–8695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Gao Y, Zhao J, Mao L et al (2008) Characterisation and stability evaluation of β carotene nano emulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int 41(1):61–68

    CAS  Google Scholar 

  • Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Encapsulation technologies for active food ingredients and food processing. Springer, Cham, pp 3–29

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to respective institutions for support. Yengkhom Disco Singh is thankful to the honourable Vice Chancellor of Central Agricultural University, Imphal, Manipur, India for providing the facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ningthoujam, R. et al. (2022). Nanotechnology in Food Science. In: Arakha, M., Pradhan, A.K., Jha, S. (eds) Bio-Nano Interface. Springer, Singapore. https://doi.org/10.1007/978-981-16-2516-9_4

Download citation

Publish with us

Policies and ethics