Skip to main content
Log in

Against fields

  • Original Paper in Philosophy of Physics
  • Published:
European Journal for Philosophy of Science Aims and scope Submit manuscript

Abstract

Using the example of classical electrodynamics, I argue that the concept of fields as mediators of particle interactions is fundamentally flawed and reflects a misguided attempt to retrieve Newtonian concepts in relativistic theories. This leads to various physical and metaphysical problems that are discussed in detail. In particular, I emphasize that physics has not found a satisfying solution to the self-interaction problem in the context of the classical field theory. To demonstrate the superiority of a pure particle ontology, I defend the direct interaction theory of Wheeler and Feynman against recent criticism and argue that it provides the most cogent formulation of classical electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This seems to be the basis of the inconsistency claim in Frisch (2004).

  2. I would strongly contest the common believe that the situation is much better in quantum theory, however not here.

References

  • Abraham, M. (1903). Prinzipien der Dynamik des Elektrons. Annalen der Physik, 315(1), 105–179.

    Article  Google Scholar 

  • Arntzenius, F. (1994). Electromagnetic arrows of time. In T. Horowitz, & A. Janis (Eds.) Maryland: Rowman & Littlefield.

  • Bauer, G. (1997). ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik. München: Herbert Utz Verlag.

    Google Scholar 

  • Bauer, G., Deckert, D.-A., & Dürr, D. (2013). On the existence of dynamics in Wheeler–Feynman electromagnetism. Zeitschrift für angewandte Mathematik und Physik, 64(4), 1087–1124.

    Article  Google Scholar 

  • Bauer, G., Deckert, D.-A., Dürr, D., & Hinrichs, G. (2014). On irreversibility and radiation in classical electrodynamics of point particles. Journal of Statistical Physics, 154(1), 610–622.

    Article  Google Scholar 

  • Bell, J.S. (2004). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Born, M., & Infeld, L. (1934). Foundations of the new field theory. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 144(852), 425–451.

    Article  Google Scholar 

  • Deckert, D.-A. (2010). Electrodynamic absorber theory – a mathematical study. Der Andere Verlag: Tönning.

    Google Scholar 

  • Deckert, D.-A., & Hartenstein, V. (2016). On the initial value formulation of classical electrodynamics. arXiv:1602.0468.

  • Deckert, D.-A., & Hinrichs, G. (2016). Electrodynamic two-body problem for prescribed initial data on a straight line. Journal of Differential Equations, 260(9), 6900–6929.

    Article  Google Scholar 

  • Dehmelt, H. (1988). A single atomic particle forever floating at rest in free space: New value for electron radius. Physica Scripta, 1988(T22), 102–110.

    Article  Google Scholar 

  • Dirac, P. A. M. (1938). Classical theory of radiating electrons. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 167 (929), 148–169.

    Article  Google Scholar 

  • Dürr, D., Goldstein, S., & Zanghì, N. (2013). Quantum physics without quantum philosophy. Berlin: Springer.

    Book  Google Scholar 

  • Earman, J. (2011). Sharpening the electromagnetic arrow(s) of time. In C. Callender (Ed.) The Oxford handbook of philosophy of time. OUP Oxford.

    Google Scholar 

  • Esfeld, M. (2009). The modal nature of structures in ontic structural realism. International Studies in the Philosophy of Science, 23(2), 179–194.

    Article  Google Scholar 

  • Esfeld, M. (2014). Quantum Humeanism, or: physicalism without properties. The Philosophical Quarterly, 64(256), 453–470.

    Article  Google Scholar 

  • Esfeld, M., Lazarovici, D., Hubert, M., & Dürr, D. (2014). The ontology of Bohmian mechanics. British Journal for the Philosophy of Science, 65(4), 773–796.

    Article  Google Scholar 

  • Feynman, R., Leighton, R., & Sands, M. (1963). The Feynman lectures on physics. Number Vol.2 in The Feynman Lectures on Physics. Pearson/Addison-Wesley.

  • Feynman, R.P. (1966). The development of the space-time view of quantum electrodynamics. Nobel Lecture, December 11, 1965. Science, 153, 699–708. Online Version: http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html.

    Article  Google Scholar 

  • Field, H.H. (1985). Can we dispense with space-time? In P.D. Asquith & P. Kitcher (Eds.) Proceedings of the 1984 Biennial meeting of the philosophy of science association. (Vol. 2, pp. 33–90). East Lansing: Philosophy of Science Association.

  • Fokker, A.D. (1929). Ein invarianter V,ariationssatz für die Bewegung mehrerer elektrischer Massenteilchen. Zeitschrift für Physik, 58(5), 386–393.

    Article  Google Scholar 

  • Frisch, M. (2000). (Dis-)solving the puzzle of the arrow of radiation. The British Journal for the Philosophy of Science, 51(3), 381–410.

    Article  Google Scholar 

  • Frisch, M. (2004). Inconsistency in classical electrodynamics. Philosophy of Science, 71(4), 525–549.

    Article  Google Scholar 

  • Frisch, M. (2005). Inconsistency, asymmetry and non-locality: a philosophical investigation of classical electrodynamics. New York: Oxford University Press.

    Book  Google Scholar 

  • Gauß, C. (1877). A letter to W. Weber on March 19th, 1845, In Gauß: Werke. (Vol. 5 pp. 627–629). Königl. Gesellschaft der Wissenschaften, Göttingen.

  • Grünbaum, A. (1976). Is preacceleration of particles in dirac’s electrodynamics a case of backward causation? The myth of retrocausation in classical electrodynamics. Philosophy of Science, 43(2), 165–201.

    Article  Google Scholar 

  • Hoyle, F., & Narlikar, J. (1969). Electrodynamics of direct interparticle action. I. The quantum mechanical response of the universe. Annals of Physics, 54(2), 207–239.

    Article  Google Scholar 

  • Kiessling, M.K.-H. (2012). On the motion of point defects in relativistic fields. In F. Finster, O. Müller, M. Nardmann, J. Tolksdorf, & E. Zeidler (Eds.) Quantum field theory and gravity: conceptual and mathematical advances in the search for a unified framework (pp. 299–335). Basel: Springer.

    Chapter  Google Scholar 

  • Komech, A., & Spohn, H. (2000). Long-time asymptotics for the coupled Maxwell-Lorentz equations. Communications in Partial Differential Equations, 25 (3-4), 559–584.

    Article  Google Scholar 

  • Lange, M. (2002). An introduction to the philosophy of physics: locality, fields, energy, and mass. Blackwell.

  • Lorentz, H. (1904). Weiterbildung der Maxwell’schen Theorie: Elektronentheorie, Enzyklopädie der Mathematischen wissenschaften, volume 5 T.2 (pp. 145–280).

    Google Scholar 

  • Maudlin, T. (2015). The Universal and the Local in quantum theory. Topoi, 34(2), 349–358.

    Article  Google Scholar 

  • Maxwell, J. (1865). A dynamical theory of the electromagnetic field. Journal Philosophical Transactions of the Royal Society of London, 155, 459–512.

    Article  Google Scholar 

  • Miller, E. (2014). Quantum entanglement, bohmian mechanics, and humean supervenience. Australasian Journal of Philosophy, 92(3), 567–583.

    Article  Google Scholar 

  • Muller, F.A. (2007). Inconsistency in classical electrodynamics? Philosophy of Science, 74(2), 253–277.

    Article  Google Scholar 

  • Mundy, B. (1989). Distant action in classical electromagnetic theory. British Journal for the Philosophy of Science, 40(1), 39–68.

    Article  Google Scholar 

  • Nodvik, J.S. (1964). A covariant formulation of classical electrodynamics for charges of finite extension. Annals of Physics, 28(2), 225–319.

    Article  Google Scholar 

  • Pietsch, W. (2010). On conceptual issues in classical electrodynamics: Prospects and problems of an action-at-a-distance interpretation. Studies in History and Philosophy of Modern Physics, 41, 67–77.

    Article  Google Scholar 

  • Price, H. (1996). Time’s arrow and archimedes’ point: New directions for the physics of time. Oxford: Oxford University Press.

    Google Scholar 

  • Ritz, W. (1908). Recherches critiques sur l’électrodynamique générale. Annales de chimie et de physique, 8(13), 145–209.

    Google Scholar 

  • Rohrlich, F. (1997). The dynamics of a charged sphere and the electron. American Journal of Physics, 65(11), 1051–1056.

    Article  Google Scholar 

  • Rohrlich, F. (2007). Classical charged particles, 3rd edn. Singapore: World Scientific Publishing.

    Book  Google Scholar 

  • Schild, A. (1963). Electromagnetic two-body problem. Physics Review, 131, 2762–2766.

    Article  Google Scholar 

  • Schwarzschild, K. (1903). Zur Elektrodynamik. ii. Die elementare elektrodynamische Kraft. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische K,lasse, 1903, 132–141.

    Google Scholar 

  • Sellars, W.S. (1963). Empiricism and the philosophy of mind. In Science, Perception and Reality (pp. 127–196). London: Routledge & Kegan Paul.

    Google Scholar 

  • Spohn, H. (2004). Dynamics of charged particles and their radiation field. Cambridge University Press.

  • Tetrode, H. (1922). Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik. Zeitschrift für Physik, 10(1), 317–328.

    Article  Google Scholar 

  • Wheeler, J.A., & Feynman, R.P. (1945). Interaction with the absorber as the mechanism of radiation. Reviews of Modern Physics, 17, 157–181.

    Article  Google Scholar 

  • Wheeler, J.A., & Feynman, R.P. (1949). Classical electrodynamics in terms of direct interparticle action. Reviews of Modern Physics, 21, 425–433.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Michael Esfeld, Dirk-André Deckert and Mario Hubert for helpful comments and discussions. I am also grateful to Detlef Dürr, whose teachings inspired great parts of my research. This work was supported by the Cogito Foundation, grant no. 15-106-R and by a Feodor Lynen Research Fellowship of the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin Lazarovici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarovici, D. Against fields. Euro Jnl Phil Sci 8, 145–170 (2018). https://doi.org/10.1007/s13194-017-0179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13194-017-0179-z

Keywords

Navigation