Skip to main content

On the Motion of Point Defects in Relativistic Fields

  • Chapter
  • First Online:
Quantum Field Theory and Gravity

Abstract

We inquire into classical and quantum laws of motion for the point charge sources in the nonlinear Maxwell–Born–Infeld field equations of classical electromagnetism in flat and curved Einstein spacetimes.

Mathematics Subject Classification (2010). 78A02, 78A25, 83A05, 83C10, 83C50, 83C75.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, M., Prinzipien der Dynamik des Elektrons, Phys. Z. 4, 57–63 (1902); Ann. Phys. 10, pp. 105–179 (1903).

    Google Scholar 

  2. Abraham, M., Theorie der Elektrizität, II, Teubner, Leipzig (1905).

    Google Scholar 

  3. Anco, S. C., and The, D., Symmetries, conservation laws, and cohomology of Maxwell’s equations using potentials, Acta Appl. Math. 89, 1–52 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. Appel, W., and Kiessling, M. K.-H., Mass and spin renormalization in Lorentz electrodynamics, Annals Phys. (N.Y.) 289, 24–83 (2001).

    Google Scholar 

  5. Appel, W., and Kiessling, M. K.-H., Scattering and radiation damping in gyroscopic Lorentz electrodynamics, Lett. Math. Phys. 60, 31–46 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartnik, R., Maximal surfaces and general relativity, pp. 24–49 in “Miniconference on Geometry/Partial Differential Equations, 2” (Canberra, June 26-27, 1986), J. Hutchinson and L. Simon, Ed., Proceedings of the Center of Mathematical Analysis, Australian National Univ., 12 (1987).

    Google Scholar 

  7. Bartnik, R., Isolated points of Lorentzian mean-curvature hypersurfaces, Indiana Univ. Math. J. 38, 811–827 (1988).

    Article  MathSciNet  Google Scholar 

  8. Bartnik, R., and Simon, L., Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys. 87, 131–152 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. Barut, A. O., Electrodynamics and classical theory of fields and particles, Dover, New York (1964).

    Google Scholar 

  10. Bauer, G., Ein Existenzsatz für die Wheeler–Feynman-Elektrodynamik, Doctoral Dissertation, Ludwig Maximilians Universität, München, (1998).

    Google Scholar 

  11. Bauer, G., Deckert, D.-A., and Dürr, D., Wheeler–Feynman equations for rigid charges — Classical absorber electrodynamics. Part II. arXiv:1009.3103 (2010)

    Google Scholar 

  12. Bia_lynicki-Birula, I., Nonlinear electrodynamics: variations on a theme by Born and Infeld, pp. 31–48 in “Quantum theory of particles and fields,” special volume in honor of Jan _Lopusza´nski; eds. B. Jancewicz and J. Lukierski, World Scientific, Singapore (1983).

    Google Scholar 

  13. Boillat, G., Nonlinear electrodynamics: Lagrangians and equations of motion, J. Math. Phys. 11, 941–951 (1970).

    Article  Google Scholar 

  14. Born, M., Modified field equations with a finite radius of the electron, Nature 132, 282 (1933).

    Article  Google Scholar 

  15. Born, M., On the quantum theory of the electromagnetic field, Proc. Roy. Soc. A143, 410–437 (1934).

    Google Scholar 

  16. Born, M., Théorie non-linéaire du champ électromagnétique, Ann. Inst. H. Poincaré 7, 155–265 (1937).

    Google Scholar 

  17. Born, M., and Infeld, L., Electromagnetic mass, Nature 132, 970 (1933).

    Google Scholar 

  18. Born, M., and Infeld, L., Foundation of the new field theory, Nature 132, 1004 (1933).

    Google Scholar 

  19. Born, M., and Infeld, L., Foundation of the new field theory, Proc. Roy. Soc. London A 144, 425–451 (1934).

    Article  Google Scholar 

  20. Born, M., and Schrödinger, E., The absolute field constant in the new field theory, Nature 135, 342 (1935).

    Google Scholar 

  21. Brenier, Y., Hydrodynamic structure of the augmented Born–Infeld equations, Arch. Rat. Mech. Anal., 172, 65–91 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  22. Carati, A., Delzanno, P., Galgani, L., and Sassarini, J., Nonuniqueness properties of the physical solutions of the Lorentz–Dirac equation, Nonlinearity 8, pp. 65–79 (1995).

    Google Scholar 

  23. Carley, H., and Kiessling, M. K.-H., Nonperturbative calculation of Born–Infeld effects on the Schrödinger spectrum of the Hydrogen atom, Phys. Rev. Lett. 96, 030402 (1–4) (2006).

    Google Scholar 

  24. Carley, H., and Kiessling, M. K.-H., Constructing graphs overn with small prescribed mean-curvature, arXiv:1009.1435 (math.AP) (2010).

    Google Scholar 

  25. Chae, D., and Huh, H., Global existence for small initial data in the Born-Infeld equations, J. Math. Phys. 44, 6132–6139 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  26. Christodoulou, D., The action principle and partial differential equations, Annals Math. Stud. 146, Princeton Univ. Press, Princeton (2000).

    Google Scholar 

  27. Christodoulou, D., and Klainerman, S., The global nonlinear stability of the Minkowski space, Princeton Math. Ser. 41, Princeton Univ. Press, Princeton (1993).

    Google Scholar 

  28. Deckert, D.-A., Electrodynamic absorber theory: a mathematical study, Ph.D. dissertation LMU Munich, 2010.

    Google Scholar 

  29. Dirac, P. A. M., Classical theory of radiating electrons, Proc. Roy. Soc. A 167, 148–169 (1938).

    Article  Google Scholar 

  30. Dirac, P. A. M., A reformulation of the Born–Infeld electrodynamics, Proc. Roy. Soc. A 257, 32–43 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  31. Dürr, D., and Teufel, S. Bohmian mechanics as the foundation of quantum mechanics, Springer (2009).

    Google Scholar 

  32. Ecker, K. Area maximizing hypersurfaces in Minkowski space having an isolated singularity, Manuscr. Math. 56, 375–397 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  33. Einstein, A., Zur Elektrodynamik bewegter Körper, Ann. Phys. 17, 891–921 (1905).

    Google Scholar 

  34. Einstein, A., Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Ann. Phys. 18, pp. 639–641 (1905).

    Google Scholar 

  35. Einstein, A., Infeld, L., and Hoffmann, B., The gravitational equations and the problem of motion, Annals Math. 39, 65–100 (1938).

    Google Scholar 

  36. Franklin, J., and Garon, T., Approximate calculations of Born–Infeld effects on the relativistic hydrogen spectrum, Phys. Lett. A 375 1391–1395 (2011).

    Article  Google Scholar 

  37. Gibbons, G. W., Born-Infeld particles and Dirichlet p-branes, Nucl. Phys. B 514, 603–639 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  38. Gittel, H.-P., Kijowski, J., and Zeidler, E., The relativistic dynamics of the combined particle-field system in renormalized classical electrodynamics, Commun. Math. Phys. 198, 711–736 (1998).

    Google Scholar 

  39. Hawking, S. W., and Ellis, G. F. R., The large scale structure of spacetime, Cambridge Univ. Press, Cambridge (1973).

    Google Scholar 

  40. Holland, P., The quantum theory of motion, Cambridge University Press (1993).

    Google Scholar 

  41. Hoppe, J., Some classical solutions of relativistic membrane equations in 4 space-time dimensions, Phys. Lett. B 329, 10–14 (1994).

    Article  MathSciNet  Google Scholar 

  42. Jackson, J. D., Classical electrodynamics, J. Wiley & Sons, New York 2nd ed. (1975).

    Google Scholar 

  43. Jackson, J. D., Classical electrodynamics, J. Wiley & Sons, New York 3rd ed. (1999).

    Google Scholar 

  44. Jackson, J. D., and Okun, L. B., Historical roots of gauge invariance, Rev. Mod. Phys. 73, 663–680 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  45. Jost, R., Das Märchen vom elfenbeinernen Turm. (Reden und Aufsätze), Springer Verlag, Wien (2002).

    Google Scholar 

  46. Kiessling, M. K.-H., Electromagnetic field theory without divergence problems. 1. The Born legacy, J. Stat. Phys. 116, 1057–1122 (2004).

    Google Scholar 

  47. Kiessling, M. K.-H., Electromagnetic field theory without divergence problems. 2. A least invasively quantized theory, J. Stat. Phys. 116, 1123–1159 (2004).

    Google Scholar 

  48. Kiessling, M. K.-H., On the quasi-linear elliptic PDE \( {-{\nabla}.\left({\nabla}u / \sqrt{1-{\mid{\nabla}u\mid}^2}\right) = 4 \pi \sum\nolimits_ k {a_k}{\delta_s}_k} \) in physics and geometry, Rutgers Univ. preprint (2011).

    Google Scholar 

  49. Kiessling, M. K.-H., Some uniqueness results for stationary solutions of the Maxwell–Born–Infeld field equations and their physical consequences, submitted to Phys. Lett. A (2011).

    Google Scholar 

  50. Kiessling, M. K.-H., Convergent perturbative power series solution of the stationary Maxwell–Born–Infeld field equations with regular sources, J. Math. Phys. 52, art. 022902, 16 pp. (2011).

    Google Scholar 

  51. Klyachin, A. A., and Miklyukov, V. M., Existence of solutions with singularities for the maximal surface equation in Minkowski space, Mat. Sb. 184, 103-124 (1993); English transl. in Russ. Acad. Sci. Sb. Math. 80, 87–104 (1995).

    Google Scholar 

  52. Klyachin, A. A., Solvability of the Dirichlet problem for the maximal surface equation with singularities in unbounded domains, Dokl. Russ. Akad. Nauk 342, 161–164 (1995); English transl. in Dokl. Math. 51, 340–342 (1995).

    Google Scholar 

  53. Landau, L., and Lifshitz, E. M., The theory of classical fields, Pergamon Press, Oxford (1962).

    Google Scholar 

  54. von Laue, M., Die Wellenstrahlung einer bewegten Punktladung nach dem Relativitätsprinzip, Ann. Phys. 28, 436–442 (1909).

    Article  MATH  Google Scholar 

  55. Liénard, A., Champ électrique et magnétique produit par une charge concentrée en un point et animée d’un mouvement quelconque, L’´Eclairage électrique 16 p. 5; ibid. p. 53; ibid. p. 106 (1898).

    Google Scholar 

  56. Lorentz, H. A., La théorie électromagnetique de Maxwell et son application aux corps mouvants, Arch. Néerl. Sci. Exactes Nat. 25, 363–552 (1892).

    Google Scholar 

  57. Lorentz, H. A., Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten Körpern, Teubner, Leipzig (1909) (orig. Leyden: Brill, 1895.)

    Google Scholar 

  58. Lorentz, H. A., Weiterbildung der Maxwell’schen Theorie: Elektronentheorie., Encyklopädie d. Mathematischen Wissenschaften V2, Art. 14, 145–288 (1904).

    Google Scholar 

  59. Lorentz, H. A., The theory of electrons and its applications to the phenomena of light and radiant heat, 2nd ed., 1915; reprinted by Dover, New York (1952).

    Google Scholar 

  60. Madhava Rao, B. S., Ring singularity in Born’s unitary theory - 1, Proc. Indian Acad. Sci. A4, 355–376 (1936).

    Google Scholar 

  61. Mie, G., Grundlagen einer Theorie der Materie, Ann. Phys. 37, 511–534 (1912); ibid. 39, 1–40 (1912); ibid. 40, 1–66 (1913).

    Google Scholar 

  62. Pippard, A. B., J. J. Thomson and the discovery of the electron, pp. 1–23 in “Electron—a centenary volume,” M. Springford, ed., Cambridge Univ. Press (1997).

    Google Scholar 

  63. Pleba´nski, J., Lecture notes on nonlinear electrodynamics, NORDITA (1970) (quoted in [BiBi1983]).

    Google Scholar 

  64. Poincaré, H., Sur la dynamique de l’électron, Comptes-Rendus 140, 1504–1508 (1905); Rendiconti del Circolo Matematico di Palermo 21, 129–176 (1906).

    Google Scholar 

  65. Pryce, M. H. L., The two-dimensional electrostatic solutions of Born’s new field equations, Proc. Camb. Phil. Soc. 31, 50–68 (1935).

    Google Scholar 

  66. Pryce, M. H. L., On a uniqueness theorem, Proc. Camb. Phil. Soc. 31, 625–628 (1935).

    Google Scholar 

  67. Pryce, M. H. L., On the new field theory, Proc. Roy. Soc. London A 155, 597–613 (1936).

    Article  Google Scholar 

  68. Rohrlich, F., Classical charged particles, Addison Wesley, Redwood City, CA (1990).

    Google Scholar 

  69. Schrödinger, E., Non-linear optics, Proc. Roy. Irish Acad. A 47, 77–117 (1942).

    Google Scholar 

  70. Schrödinger, E., Dynamics and scattering-power of Born’s electron, Proc. Roy. Irish Acad. A 48, 91–122 (1942).

    Google Scholar 

  71. Serre, D., Les ondes planes en électromagnétisme non-linéaire, Physica D31, 227–251 (1988).

    Google Scholar 

  72. Serre, D., Hyperbolicity of the nonlinear models of Maxwell’s equations, Arch. Rat. Mech. Anal. 172, 309–331 (2004).

    Article  MATH  Google Scholar 

  73. Speck, J., The nonlinear stability of the trivial solution to the Maxwell–Born–Infeld system, arXiv:1008.5018 (2010).

    Google Scholar 

  74. Speck, J., The global stability of the Minkowski spacetime solution to the Einstein-nonlinear electromagnetic system in wave coordinates, arXiv:1009.6038 (2010).

    Google Scholar 

  75. Spohn, H., Dynamics of charged particles and their radiation field, Cambridge University Press, Cambridge (2004).

    Google Scholar 

  76. Tahvildar-Zadeh, A. S., On the static spacetime of a single point charge, Rev. Math. Phys. 23, 309–346 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  77. Thirring, W. E., Classical mathematical physics, (Dynamical systems and field theory), 3rd ed., Springer Verlag, New York (1997).

    Google Scholar 

  78. Thomson, J. J., Cathode rays, Phil. Mag. 44, 294–316 (1897).

    Google Scholar 

  79. Wheeler, J. A., and Feynman, R., Classical electrodynamics in terms of direct particle interactions, Rev. Mod. Phys. 21, 425–433 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  80. Wiechert, E., Die Theorie der Elektrodynamik und die Röntgen’sche Entdeckung, Schriften d. Physikalisch- Ökonomischen Gesellschaft zu Königsberg in Preussen 37, 1-48 (1896).

    Google Scholar 

  81. Wiechert, E., Experimentelles über die Kathodenstrahlen, Schriften d. Physikalisch- Ökonomischen Gesellschaft zu Königsberg in Preussen 38, 3–16 (1897).

    Google Scholar 

  82. Wiechert, E., Elektrodynamische Elementargesetze, Arch. Néerl. Sci. Exactes Nat. 5, 549–573 (1900).

    Google Scholar 

  83. Yaghjian, A. D., Relativistic dynamics of a charged sphere, Lect. Notes Phys. Monographs 11, Springer, Berlin (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K.-H. Kiessling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Kiessling, M.KH. (2012). On the Motion of Point Defects in Relativistic Fields. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory and Gravity. Springer, Basel. https://doi.org/10.1007/978-3-0348-0043-3_14

Download citation

Publish with us

Policies and ethics