Against fields

  • Dustin Lazarovici
Original Paper in Philosophy of Physics


Using the example of classical electrodynamics, I argue that the concept of fields as mediators of particle interactions is fundamentally flawed and reflects a misguided attempt to retrieve Newtonian concepts in relativistic theories. This leads to various physical and metaphysical problems that are discussed in detail. In particular, I emphasize that physics has not found a satisfying solution to the self-interaction problem in the context of the classical field theory. To demonstrate the superiority of a pure particle ontology, I defend the direct interaction theory of Wheeler and Feynman against recent criticism and argue that it provides the most cogent formulation of classical electrodynamics.


Classical electrodynamics Relativity Fields Action at a distance Primitive ontology 



I would like to thank Michael Esfeld, Dirk-André Deckert and Mario Hubert for helpful comments and discussions. I am also grateful to Detlef Dürr, whose teachings inspired great parts of my research. This work was supported by the Cogito Foundation, grant no. 15-106-R and by a Feodor Lynen Research Fellowship of the Alexander von Humboldt Foundation.


  1. Abraham, M. (1903). Prinzipien der Dynamik des Elektrons. Annalen der Physik, 315(1), 105–179.CrossRefGoogle Scholar
  2. Arntzenius, F. (1994). Electromagnetic arrows of time. In T. Horowitz, & A. Janis (Eds.) Maryland: Rowman & Littlefield.Google Scholar
  3. Bauer, G. (1997). ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik. München: Herbert Utz Verlag.Google Scholar
  4. Bauer, G., Deckert, D.-A., & Dürr, D. (2013). On the existence of dynamics in Wheeler–Feynman electromagnetism. Zeitschrift für angewandte Mathematik und Physik, 64(4), 1087–1124.CrossRefGoogle Scholar
  5. Bauer, G., Deckert, D.-A., Dürr, D., & Hinrichs, G. (2014). On irreversibility and radiation in classical electrodynamics of point particles. Journal of Statistical Physics, 154(1), 610–622.CrossRefGoogle Scholar
  6. Bell, J.S. (2004). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Born, M., & Infeld, L. (1934). Foundations of the new field theory. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 144(852), 425–451.CrossRefGoogle Scholar
  8. Deckert, D.-A. (2010). Electrodynamic absorber theory – a mathematical study. Der Andere Verlag: Tönning.Google Scholar
  9. Deckert, D.-A., & Hartenstein, V. (2016). On the initial value formulation of classical electrodynamics. arXiv:1602.0468.
  10. Deckert, D.-A., & Hinrichs, G. (2016). Electrodynamic two-body problem for prescribed initial data on a straight line. Journal of Differential Equations, 260(9), 6900–6929.CrossRefGoogle Scholar
  11. Dehmelt, H. (1988). A single atomic particle forever floating at rest in free space: New value for electron radius. Physica Scripta, 1988(T22), 102–110.CrossRefGoogle Scholar
  12. Dirac, P. A. M. (1938). Classical theory of radiating electrons. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 167 (929), 148–169.CrossRefGoogle Scholar
  13. Dürr, D., Goldstein, S., & Zanghì, N. (2013). Quantum physics without quantum philosophy. Berlin: Springer.CrossRefGoogle Scholar
  14. Earman, J. (2011). Sharpening the electromagnetic arrow(s) of time. In C. Callender (Ed.) The Oxford handbook of philosophy of time. OUP Oxford.Google Scholar
  15. Esfeld, M. (2009). The modal nature of structures in ontic structural realism. International Studies in the Philosophy of Science, 23(2), 179–194.CrossRefGoogle Scholar
  16. Esfeld, M. (2014). Quantum Humeanism, or: physicalism without properties. The Philosophical Quarterly, 64(256), 453–470.CrossRefGoogle Scholar
  17. Esfeld, M., Lazarovici, D., Hubert, M., & Dürr, D. (2014). The ontology of Bohmian mechanics. British Journal for the Philosophy of Science, 65(4), 773–796.CrossRefGoogle Scholar
  18. Feynman, R., Leighton, R., & Sands, M. (1963). The Feynman lectures on physics. Number Vol.2 in The Feynman Lectures on Physics. Pearson/Addison-Wesley.Google Scholar
  19. Feynman, R.P. (1966). The development of the space-time view of quantum electrodynamics. Nobel Lecture, December 11, 1965. Science, 153, 699–708. Online Version: Scholar
  20. Field, H.H. (1985). Can we dispense with space-time? In P.D. Asquith & P. Kitcher (Eds.) Proceedings of the 1984 Biennial meeting of the philosophy of science association. (Vol. 2, pp. 33–90). East Lansing: Philosophy of Science Association.Google Scholar
  21. Fokker, A.D. (1929). Ein invarianter V,ariationssatz für die Bewegung mehrerer elektrischer Massenteilchen. Zeitschrift für Physik, 58(5), 386–393.CrossRefGoogle Scholar
  22. Frisch, M. (2000). (Dis-)solving the puzzle of the arrow of radiation. The British Journal for the Philosophy of Science, 51(3), 381–410.CrossRefGoogle Scholar
  23. Frisch, M. (2004). Inconsistency in classical electrodynamics. Philosophy of Science, 71(4), 525–549.CrossRefGoogle Scholar
  24. Frisch, M. (2005). Inconsistency, asymmetry and non-locality: a philosophical investigation of classical electrodynamics. New York: Oxford University Press.CrossRefGoogle Scholar
  25. Gauß, C. (1877). A letter to W. Weber on March 19th, 1845, In Gauß: Werke. (Vol. 5 pp. 627–629). Königl. Gesellschaft der Wissenschaften, Göttingen.Google Scholar
  26. Grünbaum, A. (1976). Is preacceleration of particles in dirac’s electrodynamics a case of backward causation? The myth of retrocausation in classical electrodynamics. Philosophy of Science, 43(2), 165–201.CrossRefGoogle Scholar
  27. Hoyle, F., & Narlikar, J. (1969). Electrodynamics of direct interparticle action. I. The quantum mechanical response of the universe. Annals of Physics, 54(2), 207–239.CrossRefGoogle Scholar
  28. Kiessling, M.K.-H. (2012). On the motion of point defects in relativistic fields. In F. Finster, O. Müller, M. Nardmann, J. Tolksdorf, & E. Zeidler (Eds.) Quantum field theory and gravity: conceptual and mathematical advances in the search for a unified framework (pp. 299–335). Basel: Springer.CrossRefGoogle Scholar
  29. Komech, A., & Spohn, H. (2000). Long-time asymptotics for the coupled Maxwell-Lorentz equations. Communications in Partial Differential Equations, 25 (3-4), 559–584.CrossRefGoogle Scholar
  30. Lange, M. (2002). An introduction to the philosophy of physics: locality, fields, energy, and mass. Blackwell.Google Scholar
  31. Lorentz, H. (1904). Weiterbildung der Maxwell’schen Theorie: Elektronentheorie, Enzyklopädie der Mathematischen wissenschaften, volume 5 T.2 (pp. 145–280).Google Scholar
  32. Maudlin, T. (2015). The Universal and the Local in quantum theory. Topoi, 34(2), 349–358.CrossRefGoogle Scholar
  33. Maxwell, J. (1865). A dynamical theory of the electromagnetic field. Journal Philosophical Transactions of the Royal Society of London, 155, 459–512.CrossRefGoogle Scholar
  34. Miller, E. (2014). Quantum entanglement, bohmian mechanics, and humean supervenience. Australasian Journal of Philosophy, 92(3), 567–583.CrossRefGoogle Scholar
  35. Muller, F.A. (2007). Inconsistency in classical electrodynamics? Philosophy of Science, 74(2), 253–277.CrossRefGoogle Scholar
  36. Mundy, B. (1989). Distant action in classical electromagnetic theory. British Journal for the Philosophy of Science, 40(1), 39–68.CrossRefGoogle Scholar
  37. Nodvik, J.S. (1964). A covariant formulation of classical electrodynamics for charges of finite extension. Annals of Physics, 28(2), 225–319.CrossRefGoogle Scholar
  38. Pietsch, W. (2010). On conceptual issues in classical electrodynamics: Prospects and problems of an action-at-a-distance interpretation. Studies in History and Philosophy of Modern Physics, 41, 67–77.CrossRefGoogle Scholar
  39. Price, H. (1996). Time’s arrow and archimedes’ point: New directions for the physics of time. Oxford: Oxford University Press.Google Scholar
  40. Ritz, W. (1908). Recherches critiques sur l’électrodynamique générale. Annales de chimie et de physique, 8(13), 145–209.Google Scholar
  41. Rohrlich, F. (1997). The dynamics of a charged sphere and the electron. American Journal of Physics, 65(11), 1051–1056.CrossRefGoogle Scholar
  42. Rohrlich, F. (2007). Classical charged particles, 3rd edn. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  43. Schild, A. (1963). Electromagnetic two-body problem. Physics Review, 131, 2762–2766.CrossRefGoogle Scholar
  44. Schwarzschild, K. (1903). Zur Elektrodynamik. ii. Die elementare elektrodynamische Kraft. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische K,lasse, 1903, 132–141.Google Scholar
  45. Sellars, W.S. (1963). Empiricism and the philosophy of mind. In Science, Perception and Reality (pp. 127–196). London: Routledge & Kegan Paul.Google Scholar
  46. Spohn, H. (2004). Dynamics of charged particles and their radiation field. Cambridge University Press.Google Scholar
  47. Tetrode, H. (1922). Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik. Zeitschrift für Physik, 10(1), 317–328.CrossRefGoogle Scholar
  48. Wheeler, J.A., & Feynman, R.P. (1945). Interaction with the absorber as the mechanism of radiation. Reviews of Modern Physics, 17, 157–181.CrossRefGoogle Scholar
  49. Wheeler, J.A., & Feynman, R.P. (1949). Classical electrodynamics in terms of direct interparticle action. Reviews of Modern Physics, 21, 425–433.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Faculté des lettres, Section de philosophieUniversité de LausanneLausanneSwitzerland

Personalised recommendations