Skip to main content
Log in

Baire generic results for the anisotropic multifractal formalism

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

Ben Slimane (Math Proc Camb Philos Soc 124:329–363, 1998) has constructed specific anisotropic selfsimilar functions as counter-examples for the isotropic multifractal formalism. An anisotropic multifractal formalism has been formulated and its validity for anisotropic selfsimilar functions has been proved. In this paper, using Triebel anisotropic wavelet decompositions, we first obtain lower bounds of the anisotropic scaling function and upper bounds of the u-spectrum of singularities valid for all functions. We then investigate the generic validity, in the sense of Baire’s categories, of the anisotropic formalism in some anisotropic functional spaces. We thus extend in the anisotropic setting some results of Jaffard (J Math Pure Appl 79:525–552, 2000, Ann Appl Probab 10:313–329, 2000) and Jaffard and Meyer (Memoirs of the American Mathematical Society, vol. 123, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arneodo, A., Bacry, E., Muzy, J.F.: Singularity spectrum of fractal signals from wavelet analysis: exact results. J. Stat. Phys. 70, 635–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arneodo, A., Bacry, E., Jaffard, S., Muzy, J.F.: Singularity spectrum of multifractal functions involving oscillating singularities. J. Fourier Anal. Appl. 4, 159–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayart, F., Heurteaux, Y.: Multifractal analysis of the divergence of Fourier series: the extreme cases. Annales scientifiques de l’ENS 45(6), 927–946 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Ben Braiek, H., Ben Slimane, M.: Critère de régularité directionnelle. Directional regularity criteria. C. R. Acad. Sci. Paris Sér. I Math 349, 385–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Slimane, M.: Multifractal formalism for self-similar functions under the action of nonlinear dynamical systems. Constr. Approx. 15, 209–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Slimane, M.: Multifractal formalism and anisotropic self-similar functions: Math. Proc. Camb. Philos. Soc. 124, 329–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. BenSlimane, M.: Some functional equations revisited: the multifractal properties. Int. Trans. Spec. Funct. 14, 333–348 (2003)

    Article  MathSciNet  Google Scholar 

  8. Ben Slimane, M.: Baire generic histograms of wavelet coefficients and large deviation formalism in Besov and Sobolev spaces. J. Math. Anal. Appl. 349, 403–412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben Slimane, M., Ben Braiek, H.: Directional and anisotropic regularity and irregularity criteria in Triebel wavelet bases. J. Fourier Anal. Appl. 18(5), 893–914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben Slimane, M., Ben Braiek, H.: On the gentle properties of anisotropic Besov spaces. J. Math. Anal. Appl. 396, 21–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beresnevich, V., Dickinson, D., Velani, S.: A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. Math. 164, 971–992 (2006)

    Article  MATH  Google Scholar 

  12. Beresnevich, V., Velani, S.: Measure theoretic laws for lim-sup sets. arXiv:math/0401118

  13. Biermé, H., Meerschaert, M.M., Scheffler, H.P.: Operator scaling stable random fields. Stoch. Proc. Appl. 117(3), 312–332 (2007)

    Article  MATH  Google Scholar 

  14. Bony, J.M.: Second microlocalization and propagation of singularities for semilinear hyperbolic equations. In: Hyperbolic Equations and Related Topics (Kata/Kyoto, 1984), pp. 11–49, Academic Press, Boston (1986)

  15. Buczolich, Z., Nagy, J.: Hölder spectrum of typical monotone continuous functions. Real Anal. Exchange 26, 133–156 (2000/2001)

  16. Buczolich, Z., Seuret, S.: Typical Borel measures on \([0,1]^d\) satisfy a multifractal formalism. Nonlinearity 23(11), 2905–2918 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associted with a distribution. Adv. Math. 24, 101–171 (1977)

    Article  MATH  Google Scholar 

  18. Clausel, M., Nicolay, S.: Wavelets techniques for pointwise anti-Hölderian irregularity. Constr. Approx. 33, 41–75 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Clausel, M., Vedel, B.: Explicit constructions of operator scaling Gaussian fields. Fractals 19(1), 101–111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cohen, A.: Wavelet methods in numerical analysis. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook for Numerical Analysis. North-Holland, Amsterdam (2002)

    Google Scholar 

  21. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  22. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Daubechies, I., Lagarias, J.C.: On the thermodynamic formalism for functions. Rev. Math. Phys. 6, 1033–1070 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Devore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–151 (1998)

    Article  MathSciNet  Google Scholar 

  25. Durand, A., Jaffard, S.: Multifractal analysis of Lévy fields. Probab. Theory Relat Fields (2011). doi:10.1007/s00440-011-0340-0

    Google Scholar 

  26. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Toronto (1990)

    MATH  Google Scholar 

  27. Farkas, W.: Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr. 209, 83–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Folland, G.B., Stein, E.M.: Hardy spaces on homogeneous groups. Mathematical Notes, 28, Princeton University Press and University of Tokyo Press, Princeton (1982)

  29. Fraysse, A.: Generic validity of the multifractal formalism. SIAM J. Math. Anal. 39, 593–607 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fraysse, A., Jaffard, S.: How smooth is almost every function in a Sobolev space? Rev. Math. Iberoam. 22(2), 663–682 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Frisch, U., Parisi, G.: Fully developped turbulence and intermittency. In: Proceedings of the International School of Physics Enrico Fermi, North Holland, pp. 84–88 (1985)

  32. Garrigós, G., Tabacco, A.: Wavelet decompositions of anisotropic Besov spaces. Math. Nachr. 239, 80–102 (2002)

    Article  MathSciNet  Google Scholar 

  33. Garrigós, G., Hochmuth, R., Tabacco, A.: Wavelet characterizations for anisotropic Besov spaces with \(0<p<1\). Proc. Edinb. Math. Soc. 47, 573–595 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hochmuth, R.: Wavelet characterizations for anisotropic Besov spaces. Appl. Comput. Harmon. Anal. 12, 179–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jaffard, S.: Pointwise smoothness, two-microlocalization and wavelet coefficients. Publ. Math. 35, 155–168 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jaffard, S.: The spectrum of singularities of Riemanns function. Rev. Mat. Iberoam. 12, 441–460 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jaffard, S.: Multifractal formalism for functions. Part 1: results valid for all functions and Part 2: selfsimilar functions. SIAM J. Math. Anal. 28, 944–998 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jaffard, S.: The multifractal nature of the Lévy processes. Probab. Theory Related Fields 114, 207–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jaffard, S.: On the Frisch–Parisi conjecture. J. Math. Pure Appl. 79, 525–552 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jaffard, S.: On lacunary wavelet series. Ann. Appl. Probab. 10, 313–329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. In: Memoirs of the American Mathematical Society, vol. 123. American Mathematical Society, Providence (1996)

  43. Lemarié, P.-G., Meyer, Y.: Ondelettes et bases hilbertiennes. Rev. Math. Iberoam. 1, 1–8 (1986)

    Article  Google Scholar 

  44. Lévy Véhel, J.: Fractal approaches in signal processing. Fractals 3(4), 755–775 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Melot, C.: Oscillating singularities in Besov spaces. J. Math. Pure. Appl. 83, 367–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Meyer, Y.: Ondelettes et Opérateurs I: Ondelettes. Hermann, Paris (1990)

    Google Scholar 

  48. Olsen, L.: Measurability of multifractal measure functions and multifractal dimension functions. Hiroshima Math. J. 29, 435–458 (1999)

    MathSciNet  MATH  Google Scholar 

  49. Rogers, C.A.: Hausdorff Measures. Cambridge University Press, London (1970)

    MATH  Google Scholar 

  50. Schmeling, J., Seuret, S.: On measures resisting multifractal analysis. To appear in the book “Nonlinear Dynamics: New Directions, Theoretical Aspects” (in honor of V. Afraimovich), published in the series “Mathematical Method and Modeling”, Springer

  51. Triebel, H.: Theory of Function Spaces III. Monographs in Mathematics, 78th edn. Birkhäuser, Basel (2006)

    Google Scholar 

  52. Triebel, H.: Wavelet Bases in Anisotropic Function Spaces. In: Proceedings of Conference on “Function spaces, differential operators and nonlinear analysis”, Milovy, pp. 370–387, Math. Inst. Acad. Sci. Czech Republic, Prague (2004)

  53. Vedel, B.: Besov characteristic of a distribution. Rev. Math. Complut. 20(2), 407–421 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Xiao, Y.: Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) A Minicourse on Stochastic Partial Differential Equations . Lecture notes in Math, pp. 145–212. Springer, New York (1962)

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding Research Group no. RG-1435-063. Mourad Ben Slimane is thankful to Stéphane Jaffard for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Ben Slimane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Slimane, M., Ben Braiek, H. Baire generic results for the anisotropic multifractal formalism. Rev Mat Complut 29, 127–167 (2016). https://doi.org/10.1007/s13163-015-0185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-015-0185-7

Keywords

Mathematical Subject Classification

Navigation