Skip to main content
Log in

Singularity spectrum of fractal signals from wavelet analysis: Exact results

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The multifractal formalism for singular measures is revisited using the wavelet transform. For Bernoulli invariant measures of some expanding Markov maps, the generalized fractal dimensions are proved to be transition points for the scaling exponents of some partition functions defined from the wavelet transform modulus maxima. The generalization of this formalism to fractal signals is established for the class of distribution functions of these singular invariant measures. It is demonstrated that the Hausdorff dimensionD(h) of the set of singularities of Hölder exponenth can be directly determined from the wavelet transform modulus maxima. The singularity spectrum so obtained is shown to be not disturbed by the presence, in the signal, of a superimposed polynomial behavior of ordern, provided one uses an analyzing wavelet that possesses at leastN>n vanishing moments. However, it is shown that aC behavior generally induces a phase transition in theD(h) singularity spectrum that somewhat masks the weakest singularities. This phase transition actually depends on the numberN of vanishing moments of the analyzing wavelet; its observation is emphasized as a reliable experimental test for the existence of nonsingular behavior in the considered signal. These theoretical results are illustrated with numerical examples. They are likely to be valid for a large class of fractal functions as suggested by recent applications to fractional Brownian motions and turbulent velocity signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  2. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman,Phys. Rev. A 33:1141 (1986).

    Google Scholar 

  3. G. Paladin and A. Vulpiani,Phys. Rep. 156:148 (1987).

    Google Scholar 

  4. H. E. Stanley and N. Ostrowski, eds.,On Growth and Form: Fractal and Nonfractal Patterns in Physics (Martinus Nijhof, Dordrecht, 1986), and references therein; H. E. Stanley and N. Ostrowski, eds.,Random Fluctuations and Pattern Growth (Kluwer Academic, Dordrecht, 1988), and references therein.

    Google Scholar 

  5. L. Pietronero and E. Tosatti, eds.,Fractals in Physics (North-Holland, Amsterdam, 1986), and references therein.

    Google Scholar 

  6. A. Aharony and J. Feder, eds., Essays in honour of B. B. Mandelbrot, Fractals in Physics,Physica D 38 (1989), and references therein.

  7. E. B. Vul, Ya. G. Sinai, and K. M. Khanin,Usp. Mat. Nauk 39:3 (1984) [J. Russ. Math. Sun. 39:1 (1984)].

    Google Scholar 

  8. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani,J. Phys. A 17:3521 (1984).

    Google Scholar 

  9. D. Rand,Ergodic Theory Dynamic Syst. 9:527 (1989).

    Google Scholar 

  10. P. Collet, J. Lebowitz, and A. Porzio,J. Stat. Phvs. 47:609 (1987).

    Google Scholar 

  11. M. J. Feigenbaum,J. Stat. Phys. 46:919, 925 (1987).

    Google Scholar 

  12. R. Badii, Thesis, University of Zurich (1987).

  13. J. Feder,Fractals (Pergamon, New York, 1988), and references therein.

    Google Scholar 

  14. T. Vicsek,Fractal Growth Phenomena (World Scientific, Singapore, 1989), and references therein.

    Google Scholar 

  15. P. Meakin, inPhase Transition and Critical Phenomena, Vol. 12, C. Domb and J. L. Lebowitz, eds. (Academic Press, Orlando, Florida, 1988).

    Google Scholar 

  16. B. Mandelbrot,J. Fluid Mech. 62:331 (1974).

    Google Scholar 

  17. U. Frisch, P. L. Sulem, and M. Nelkin,J. Fluid Mech. 87:719 (1978).

    Google Scholar 

  18. C. Meneveau and K. R. Sreenivasan,J. Fluid Mech. 224:429 (1991).

    Google Scholar 

  19. P. Grassberger,Phys. Lett. A 97:227 (1983).

    Google Scholar 

  20. H. G. E. Hentschel and I. Procaccia,Physica D 8:435 (1983).

    Google Scholar 

  21. P. Grassberger and I. Procaccia,Physica D 13:34 (1984).

    Google Scholar 

  22. Ya. G. Sinai,Usp. Mat. Nauk 27:21 (1972) [J. Russ. Math. Surv. 166:21 (1972)].

    Google Scholar 

  23. R. Bowen,Lecture Notes in Mathematics, Vol. 470 (Springer, New York, 1975).

    Google Scholar 

  24. D. Ruelle,Statistical Mechanics (Addison-Wesley, Reading, Massachusetts, 1969);Thermodynamics Formalism (Addison-Wesley, Reading, Massachusetts, 1978).

    Google Scholar 

  25. T. Bohr and T. Tèl, inDirection in Chaos, Vol. 2, Hao Bai-Lin, ed. (World Scientific, Singapore, 1988).

    Google Scholar 

  26. U. Frisch and G. Parisi, Fully developed turbulence and intermittency, inProceedings of International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1985), p. 84.

    Google Scholar 

  27. A. L. Barabási and T. Vicsek,Phys. Rev. A 44:2730 (1991).

    Google Scholar 

  28. F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia,J. Fluid Mech. 140:63 (1984).

    Google Scholar 

  29. Y. Gagne, E. J. Hopfinger, and U. Frisch, inNew Trends in Nonlinear Dynamics and Pattern Forming Phenomena: The Geometry of Nonequilibrium, P. Huerre and P. Coullet, eds. (Plenum Press, New York, 1988).

    Google Scholar 

  30. B. Castaing, Y. Gagne, and E. J. Hopfinger,Physica D 46:177 (1990).

    Google Scholar 

  31. J. F. Muzy, E. Bacry, and A. Arnéodo,Phys. Rev. Lett. 67:3515 (1991).

    Google Scholar 

  32. A. Arnéodo, E. Bacry, and J. F. Muzy, Wavelet analysis of fractal signals: Direct determination of the singularity spectrum of fully developed turbulence data (Springer-Verlag, Berlin, 1991), to appear.

    Google Scholar 

  33. J. F. Muzy, E. Bacry, and A. Arnéodo, Multifractal formalism for self-affine signals: The structure function approach versus the wavelet transform modulus maxima method,Phys. Rev. E, to appear.

  34. A. Grossmann and J. Morlet,SIAM J. Math. Anal. 15:723 (1984).

    Google Scholar 

  35. I. Daubechies, A. Grossmann, and Y. Meyer,J. Math. Phys. 127:1271 (1986).

    Google Scholar 

  36. J. M. Combes, A. Grossmann, and P. Tchamitchian, eds.,Wavelets (Springer-Verlag, Berlin, 1988), and references therein.

    Google Scholar 

  37. Y. Meyer,Ondelettes (Hermann, Paris, 1990).

    Google Scholar 

  38. P. G. Lemarié, ed.,Les Ondelettes en 1989 (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  39. A. Arnéodo, G. Grasseau, and M. Holschneider,Phys. Rev. Lett. 61:2281 (1988); and inWavelets, J. M. Combes, A. Grossmann, and P. Tchamitchian, eds. (Springer-Verlag, Berlin, 1988), p. 182.

    Google Scholar 

  40. M. Holschneider,J. Stat. Phys. 50:963 (1988); Thesis, University of Aix-Marseille II (1988).

    Google Scholar 

  41. A. Arnéodo, F. Argoul, J. Elezgaray, and G. Grasseau, inNonlinear Dynamics, G. Turchetti, ed. (World Scientific, Singapore, 1988), p. 130.

    Google Scholar 

  42. A. Arnéodo, F. Argoul, and G. Grasseau, inLes Ondelettes en 1989, P. G. Lemarié, ed. (Springer-Verlag, Berlin, 1990), p. 125.

    Google Scholar 

  43. G. Grasseau, Thesis, University of Bordeaux (1989).

  44. A. Arnéodo, F. Argoul, E. Bacry, J. Elezgaray, E. Freysz, G. Grasseau, J. F. Muzy, and B. Pouligny, inWavelets and Their Applications, Y. Meyer, ed. (Springer, Berlin, 1992), p. 286.

    Google Scholar 

  45. M. Holschneider and P. Tchamitchian, inLes Ondelettes en 1989, P. G. Lemarié, ed. (Springer-Verlag, Berlin, 1990), p. 102.

    Google Scholar 

  46. S. Jaffard,C. R. Acad. Sci. Paris 308:79 (1989); Sur la dimension de Hausdorff de points singuliers d'une fonction, preprint (1991).

    Google Scholar 

  47. S. Maltet and W. L. Hwang,IEEE Trans. on Information Theory 38:617 (1992).

    Google Scholar 

  48. P. Cvitanovic, inXV International Colloquium on Group Theoretical Methods in Physics, R. Gilmore, ed. (World Scientific, Singapore, 1987).

    Google Scholar 

  49. P. Grassberger, R. Badii, and A. Politi,J. Stat. Phys. 51:135 (1988).

    Google Scholar 

  50. D. Katzen and I. Procaccia,Phys. Rev. Lett. 58:1169 (1987).

    Google Scholar 

  51. T. Bohr and M. H. Jensen,Phys. Rev. A 36:4904 (1987).

    Google Scholar 

  52. A. Arnéodo, F. Argoul, E. Freysz, J. F. Muzy, and B. Pouligny, inWavelet and Their Applications, M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, and L. Raphael, eds. (Jones and Bartlett, Boston, 1991), p. 241.

    Google Scholar 

  53. J. M. Ghez and S. Vaienti,Nonlinearity 5:772; 791 (1992).

  54. K. Falconer,The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  55. P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion, preprint (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacry, E., Muzy, J.F. & Arnéodo, A. Singularity spectrum of fractal signals from wavelet analysis: Exact results. J Stat Phys 70, 635–674 (1993). https://doi.org/10.1007/BF01053588

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053588

Key words

Navigation