Skip to main content
Log in

Wavelets Techniques for Pointwise Anti-Hölderian Irregularity

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper, we introduce a notion of weak pointwise Hölder regularity, starting from the definition of the pointwise anti-Hölder irregularity. Using this concept, a weak spectrum of singularities can be defined as for the usual pointwise Hölder regularity. We build a class of wavelet series satisfying the multifractal formalism and thus show the optimality of the upper bound. We also show that the weak spectrum of singularities is disconnected from the casual one (referred to here as strong spectrum of singularities) by exhibiting a multifractal function made of Davenport series whose weak spectrum differs from the strong one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abry, P., Lashermes, B., Jaffard, S.: Wavelets leaders in multifractal analysis, wavelets analysis and applications. In: Tao, Q., Mang, I.V., Xu, Y. (eds.) Applied and Numerical Harmonic Analysis, pp. 219–264. Birkäuser, Basel (2006)

    Google Scholar 

  2. Abry, P., Jaffard, S., Vedel, B., Wendt, H.: The contribution of wavelets in multifractal analysis (submitted)

  3. Adler, R.J.: The Geometry of Random Field. Wiley, New York (1981)

    Google Scholar 

  4. Aouidi, J., Slimane, M.B.: Multifractal formalism for quasi self-similar functions. J. Stat. Phys. 108, 541–589 (2002)

    Article  MATH  Google Scholar 

  5. Arneodo, A., Bacry, E., Muzy, J.-F.: The thermodynamics of fractals revisited with wavelets. Physica A 213, 232–275 (1995)

    Article  Google Scholar 

  6. Barral, J.: Moments, continuité et analyse multifractale des martingales de Mandelbrot. Probab. Theory Relat. Fields 113, 535–569 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barral, J.: Continuity of the multifractal spectrum of a random statistically self-similar measures. J. Theor. Probab. 13, 1027–1060 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barral, J., Seuret, S.: From multifractal measures to multifractal wavelet series. J. Fourier Anal. Appl. 11(5), 589–614 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berman, S.M.: Gaussian sample functions: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46, 63–86 (1972)

    MATH  MathSciNet  Google Scholar 

  10. Berman, S.M.: Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23(1), 69–86 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bousch, T., Heurteaux, Y.: On oscillations of Weierstrass-type functions. Manuscript (1999)

  12. Bousch, T., Heurteaux, Y.: Caloric measure on domains bounded by Weierstrass type graphs. Ann. Acad. Sci. Fenn. Math. 25(2), 501–522 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Brown, G., Michon, G., Peyrière, J.: On the multifractal analysis of measures. J. Stat. Phys. 66, 775–790 (1992)

    Article  MATH  Google Scholar 

  14. Clausel, M.: Etude de quelques notions d’irrégularité: le point de vue ondelettes. Thesis (2008)

  15. Clausel, M., Nicolay, S.: Some prevalent results about strongly monoHölder functions. Nonlinearity 23, 2101–2116 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Collet, P., Koukiou, F.: Large deviations for multiplicative chaos. Commun. Math. Phys. 147, 329–342 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Daoudi, K., Lévy-Véhel, J., Meyer, Y.: Construction of continuous functions with prescribed local regularity. Constr. Approx. 14, 349–385 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Demichel, Y., Tricot, C.: Analysis of fractal sum of pulses. Math. Proc. Camb. Philos. Soc. 141, 355–370 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. DeVore, R.A., Sharpley, R.C.: Maximal functions measuring smoothness. Mem. Am. Math. Soc. 47 (1984)

  21. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (1990)

    MATH  Google Scholar 

  22. Geman, D., Horowitz, J.: Occupation densities. An. Probab. 8, 1–67 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hardy, G.H.: Weierstrass’s non differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)

    MATH  MathSciNet  Google Scholar 

  24. Heurteaux, Y.: Estimations de la dimension inférieure et de la dimension supérieure des mesures. Ann. Inst. Henri Poincaré 34, 309–338 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Heurteaux, Y.: Weierstrass function with random phases. Trans. Am. Math. Soc. 355(8), 3065–3077 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Heurteaux, Y.: Weierstrass function in Zygmund’s class. Proc. Am. Math. Soc. 133(9), 2711–2720 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Holley, R., Waymire, E.C.: Multifractal dimensions and scaling exponents for strongly bounded random cascades. Ann. Appl. Probab. 2, 819–845 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jaffard, S.: The spectrum of singularities of Riemann’s function. Rev. Mat. Iberoam. 12, 441–460 (1996)

    MATH  MathSciNet  Google Scholar 

  29. Jaffard, S.: Multifractal formalism for functions. SIAM J. Math. Anal. 28, 944–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jaffard, S.: Wavelet techniques in multifractal analysis, fractal geometry and applications. Proc. Symp. Pure Math. 72, 91–151 (2004)

    MathSciNet  Google Scholar 

  31. Jaffard, S.: On Davenport expansions. Proc. Symp. Pure Math. 72, 91–151 (2004)

    MathSciNet  Google Scholar 

  32. Jaffard, S., Nicolay, S.: Pointwise smoothness of space-filling functions. Appl. Comput. Harmon. Anal. 26(2), 181–199 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kahane, J.-P.: Produits de poids aléatoires et indépendants et applications. In: Bélair, J., Dubuc, S. (eds.) Fractal Geometry and Analysis, pp. 277–324 (1991)

  34. Kaplan, J.L., Mallet-Paret, J., Yorke, J.A.: The Lyapounov dimension of a nowhere differentiable torus. Ergod. Theory Dyn. Syst. 4, 261–281 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  35. Krantz, S.G.: Lipschitz spaces, smoothness of functions, and approximation theory. Expo. Math. 1, 193–260 (1983)

    MATH  MathSciNet  Google Scholar 

  36. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1998)

    MATH  Google Scholar 

  37. Mandelbrot, B.B.: Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974)

    Article  MATH  Google Scholar 

  38. Mauldin, R.D., Williams, S.C.: On the Hausdorff dimensions of some graphs. Trans. Am. Math. 298(2), 793–803 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  39. Meyer, Y.: Ondelettes et opérateurs. Hermann, Paris (1990)

    Google Scholar 

  40. Michon, G.: Une construction des mesures de Gibbs sur certains ensembles de Cantor. C. R. Acad. Sci. Paris 308, 315–318 (1989)

    MATH  MathSciNet  Google Scholar 

  41. Michon, G.: Mesures de Gibbs sur les Cantor réguliers. Ann. Inst. Henri Poincaré, Phys. Théor. 58(3), 267–285 (1993)

    MATH  MathSciNet  Google Scholar 

  42. Molchan, G.M.: Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681–702 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nicolay, S.: About the pointwise Hölder exponents of some functions. Preprint (2008)

  44. Parisi, G., Frisch, U.: On the singularity spectrum of fully developped turbulence. In: Turbulence and Predictability in Geophysical Fluid Dynamics, Proceedings of the International Summer School in Physics Enrico Fermi, pp. 84–87. North-Holland, Amsterdam (1985)

    Google Scholar 

  45. Pitt, L.D.: Local times for Gaussian vector fields. Indiana Univ. Math. J. 27, 309–330 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  46. Przytycki, F., Urbanski, M.: On the Hausdorff dimension of some fractal sets. Stud. Math. 93, 155–186 (1989)

    MATH  MathSciNet  Google Scholar 

  47. Tricot, C.: Courbes et Dimension Fractale. Springer, Berlin (1992)

    Google Scholar 

  48. Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109, 129–157 (1997)

    Article  MATH  Google Scholar 

  49. Xiao, Y.: Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV, 157–193 (2005)

    Google Scholar 

  50. Xiao, Y.: Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1962, pp. 145–212. Springer, New York (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Nicolay.

Additional information

Communicated by Stephane Jaffard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clausel, M., Nicolay, S. Wavelets Techniques for Pointwise Anti-Hölderian Irregularity. Constr Approx 33, 41–75 (2011). https://doi.org/10.1007/s00365-010-9120-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-010-9120-9

Keywords

Mathematics Subject Classification (2000)

Navigation