Skip to main content
Log in

Summer precipitation changes over the Yangtze River Valley and North China: Simulations from CMIP3 models

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We present a study of summer precipitation changes over the Yangtze River Valley (YRV) and North China (NC) simulated from 20 models of the CMIP3 (phase 3 of the Coupled Model Intercomparison Project). It is found that the LASG-FGOALS-g1.0 (fgoals) model has the highest ability in simulating both the interannual variability of individual regions and the seesaw pattern of the two regions observed during the past few decades. Analyses of atmospheric circulations indicate that the variability in precipitation is closely associated with the 850 hPa meridional winds over the two regions. Wetness in the YRV and dryness in NC are corresponding to strong meridional wind gradient and weak meridional wind over these two regions, respectively. The ability of a coupled general circulation model (CGCM) to simulate precipitation changes in the YRV and NC depends on how well the model reproduces both observed associations of precipitation with overlying meridional winds and observed meridional wind features in summer. Analysis of future precipitation changes over the two regions projected by the fgoals model under the IPCC scenarios B1 and A1B suggests a significant increase of 7–15% for NC after 2040s due to the strengthened meridional winds, and a slight increase over the YRV due to less significant intensification of the Mei-yu front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605–4630.

    Article  Google Scholar 

  • ____, H. Li, Y. Sun, L.-C. Hong, Lin Ho, C. Chou, and T. Zhou, 2013: The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J. Geophys. Res. Atmos., 118, 7024–7045.

    Google Scholar 

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674.

    Article  Google Scholar 

  • Diansky, N. A., and E. M. Volodin, 2002: Simulation of present-day climate with a coupled atmosphere-ocean general circulation model (English translation). Izv. Atmos. Ocean. Phys., 38, 732–747.

    Google Scholar 

  • Ding, Y. H., Y. J. Liu, Y. Sun, and Y. F. Song, 2010: Weakening of the Asian summer monsoon and its impact on the precipitation pattern in China. Int. J. Water Resour. Dev. 26, 423–439.

    Article  Google Scholar 

  • ____, Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: observed evidences. Int. J. Climatol., 28, 1139–1161.

    Article  Google Scholar 

  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for climate modelling and analysis global coupled model and its climate. Clim. Dynam., 16, 451–467.

    Article  Google Scholar 

  • Fu, G., S. Charles, J. Yu, and C. Liu, 2009: Decadal climatic variability, trends, and future scenarios for the North China Plain. J. Climate, 22, 2111–2123.

    Article  Google Scholar 

  • Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamsto, A. Sorteberg, 2003: Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim. Dynam., 21, 27–51.

    Article  Google Scholar 

  • Gong, D. Y., and C. H. Ho, 2002: Summer rainfall shift over Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, doi:10.1029/2001GL014523

    Google Scholar 

  • Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research Tech. Paper 60, 130 pp.

    Google Scholar 

  • Hasumi, H., and Coauthors, 2004: K-1 Coupled GCM (MIRCO) description. K-1 Model Developers Tech. Rep. 1, 34 pp.

    Google Scholar 

  • Huang, R. H., Y. H, Xu, and L. T., Zhou, 1999: The interdecadal variation of summer precipitation in China and the drought trend in North China. Plateau Meteor., 18, 465–476. (in Chinese with English abstract)

    Google Scholar 

  • Jiang, D. B., H. J. Wang, and X. M. Lang, 2005: Evaluation of East Asian climatology as simulated by seven coupled models. Adv. Atmos. Sci., 22, 479–495.

    Article  Google Scholar 

  • Johns, T. C., and Coauthors, 2005: HadGEM1-Model description and analysis of preliminary experiments for the IPCC Fourth Assessment Report. Hadley Centre Technical Note 55, UK Met Office, 74 pp.

    Google Scholar 

  • Jones, C., J. Gregory, R. Thorpe, P. Cox, J. Murphy, D. Sexton, H. Valdes, 2004: Systematic optimization and climate simulation of famous, a fast version of HADCM3. Hadley Centre Technical Note 60, 33 pp.

    Google Scholar 

  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 3952–3972.

    Article  Google Scholar 

  • Kim, H. J., B. Wang, and Q. H. Ding, 2008: The global monsoon variability simulated by CMIP3 coupled climate models. J. Climate, 2008, 21, 5271–5294.

    Article  Google Scholar 

  • Kimoto, M., 2005: Simulated change of the East Asian circulation under global warming scenario. Geophys. Res. Lett., 32, L16701, doi:10.1029/2005GL023383.

    Article  Google Scholar 

  • Kitoh, A., and T. Uchiyama, 2006: Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J. Meteor. Soc. Japan, 84, 247–258.

    Article  Google Scholar 

  • Kripalani, R. H., J. H. Oh, and H. S. Chaudhari, 2007: Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 87, 1–28.

    Article  Google Scholar 

  • Kurihara, K.,and Coauthors, 2005: Projection of climate change over Japan due to global warming by high-resolution regional climate model in MRI. Sci. Online Lett. Atmos., 1, 97–100.

    Google Scholar 

  • Lal, M., and H. Harasawa, 2001: Future climate change scenarios for Asia as inferred from selected coupled atmosphere-ocean global climate models. J. Meteor. Soc. Japan, 79, 219–227.

    Article  Google Scholar 

  • Lee, E.-J., W.-T. Kwon, and H.-J. Baek, 2008: Summer precipitation changes in the northeast Asia from the AOGCM global warming experiments. J. Meteor. Soc. Japan, 86, 475–490.

    Article  Google Scholar 

  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010a: Response of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim. Dynam., 34: 501–514.

    Article  Google Scholar 

  • Li, J., Z. Wu, Z. Jiang, and J. He, 2010b: Can global warming strengthen the East Asian summer monsoon?. J. Climate, 23, 6696–6705.

    Article  Google Scholar 

  • Li, Q. P., Y. H. Ding, and W. J. Dong, 2008: Summer precipitation change over Eastern China in future 30 years under SRES A2 Scenario. J. Appl. Meteor. Sci., 19, 770–780

    Google Scholar 

  • Lin, J. L., K. M. Weickman, G. N. Kiladis, B. E. Mapes, S. D. Schubert, M. J. Suarez, J. T. Bacmeister, and M.-I. Lee, 2008: Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC coupled models. J. Climate, 21, 4541–4567.

    Article  Google Scholar 

  • Marti, O., and Coauthors, 2005: The new IPSL climate system model: IPSL-CM4. Institut Pierre Simon Laplace Tech. Note 26, 84 pp.

    Google Scholar 

  • Meehl, G. A., C. Covey, B. Mcavaney, M. Latif, and R. J. Stouffer, 2005: Overview of the coupled model intercomparison project. Bull. Amer. Meteor. Soc., 86, 89–93.

    Article  Google Scholar 

  • Min, S.-K., E.-H. Park, and W.-T. Kwon, 2004: Future projections of East Asian climate change from multi-AOGCM ensembles of IPCC SRES scenario simulations. J. Meteor. Soc. Japan, 82, 1187–1211.

    Article  Google Scholar 

  • Nitta, T., and Z. Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan, 74, 425–445.

    Google Scholar 

  • Salas-Mélia, D., F. Chauvin, M. Deque, H. Douville, J. F. Gueremy, P. Marquet, S. Planton, J. F. Royer, and S. Tyteca, 2005: Description and validation of the CNRM-CM3 global coupled model. CNRM Tech. Rep. 103.

  • Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparsion to in situ, satellite and reanalysis data. J. Climate, 19, 153–192.

    Article  Google Scholar 

  • Shen, C., W.-C. Wang, Y. Peng, Y. Xu, and J. Zheng, 2009: Variability of summer precipitation over Eastern China during the last millennium. Climate Past, 5, 129–141.

    Article  Google Scholar 

  • Sun, Y., and Y. H. Ding, 2008: Validation of IPCC AR4 climate models in simulating interdecadal change of East Asian summer monsoon. Acta Meteor. Sinica, 66, 765–780. (in Chinese with English abstract)

    Google Scholar 

  • ____, and _____, 2010: A projection of future changes in summer precipitation and monsoon in East Asia. Sci. China Earth Sci., 53, 284–300.

    Article  Google Scholar 

  • Tao, H., M. Gemmer, J. H. Jiang, X. J. Lai, and Z. X. Zhang, 2012: Assessment of CMIP3 climate models and projected changes of precipitation and temperature in the Yangtze River Basin, China. Climatic Change, 111, 737–751.

    Article  Google Scholar 

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Wang, B., Z. W. Wu, J. P. Li, J. Liu, C.-P. Chang, Y. H. Ding, and G. X. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449–4463.

    Article  Google Scholar 

  • Wang, Y., B. Wang, and J. H. Oh, 2001a: Impact of preceding El Niño on the East Asian summer atmosphere circulation. J. Meteor. Soc. Japan, 79, 575–589.

    Article  Google Scholar 

  • ____, Y. Zhan, and J. Chen, 2001b: An East Asian summer monsoon index in description of Meiyu phenomenon. Climatic Environ. Res., 6, 146–152. (in Chinese with English abstract)

    Google Scholar 

  • Washington, W. M., and Coauthors, 2000: Parallel Climate Model (PCM) control and transient simulations. Clim. Dynam., 16, 755–774.

    Article  Google Scholar 

  • Wei, M., 2005: A coupled model study on the intensification of the Asian summer monsoon in IPCC SRES scenarios. Adv. Atmos. Sci., 22, 798–806.

    Article  Google Scholar 

  • Xu, C. H., X. Y. Shen, and Y. Xu, 2007: An analysis of climate change in East Asia by using the IPCC AR4 simulations. Adv. Climate Change Res., 3, 287–292. (in Chinese with English abstract)

    Google Scholar 

  • Xue, F., and C. Z. Liu, 2008: The influence of moderate ENSO on summer rainfall in eastern China and its comparison with strong ENSO. Chin. Sci. Bull., 53, 791–800. (in Chinese with English abstract)

    Article  Google Scholar 

  • Yang, F. L., and K.-M. Lau, 2004: Trend and variability of China precipitation in spring and summer: linkage to sea-surface temperatures. Int. J. Climatol., 24, 1625–1644.

    Article  Google Scholar 

  • Yu, R. C., B. Wang, and T. Zhou, 2004: Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophs. Res. Lett., 31, doi: 10.1029/2004GL021270.

  • ____, T. Zhou, 2007: Seasonality and three-dimensional structure of the interdecadal change in East Asian monsoon. J. Climate, 20, 5344–5355.

    Article  Google Scholar 

  • Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled oceanatmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.

    Article  Google Scholar 

  • Yukimoto, S., and Coauthors, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute Coupled GCM, Version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84, 333–363.

    Article  Google Scholar 

  • Zeng, G., Z. B. Sun, W.-C. Wang, and J. Z. Min, 2007: Interdecadal variability of East Asian summer monsoon and associated atmospheric circulation. Adv. Atmos. Sci., 24, 915–926.

    Article  Google Scholar 

  • ____, W.-C. Wang, and C. Shen, 2012: Association of the rainy-season precipitation with low-level meridional wind in the Yangtze River Valley and North China. J. Climate, 25, 792–799.

    Article  Google Scholar 

  • Zhang, L., Y. H. Ding, and Y. Sun, 2008: Evaluation of precipitation simulation in east asian monsoon areas by coupled ocean-atmosphere genernal circulation models. Chinese J. Atmos. Sci., 32, 261–276. (in Chinese with English abstract)

    Google Scholar 

  • Zhao, P., S. Yang, and R. C. Yu, 2010: Long-term changes in rainfall over Eastern China and large-scale atmospheric circulation associated with recent global warming. J. Climate, 23, 1544–1592.

    Article  Google Scholar 

  • Zhao, Z. G., 1999: Study on drought-floods and its environment fields in summer in China. Beijing: China Meterological Press, 297 pp. (in Chinese)

    Google Scholar 

  • Zhu, C. W., W.-S. Lee, H. W. Kang, C.-K. Park, 2005: A proper monsoon index for seasonal and interannual variations of the East Asian monsoon. Geophs. Res. Lett., 32, L02811, doi: 10.1029/2004GL021295.

    Google Scholar 

  • Zhu, Y. L., and H. J. Wang, 2008: The arctic and antarctic oscillation in the IPCC AR4 coupled models. Acta Meteor. Sinica, 66, 993–1004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiming Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, G., Wang, WC., Shen, C. et al. Summer precipitation changes over the Yangtze River Valley and North China: Simulations from CMIP3 models. Asia-Pacific J Atmos Sci 50, 355–364 (2014). https://doi.org/10.1007/s13143-014-0022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0022-9

Key words

Navigation