Skip to main content

Advertisement

Log in

Astrogliosis: a Target for Intervention in Intracerebral Hemorrhage?

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH) is a debilitating neurological injury, accounting for 10–15 % of all strokes. Despite neurosurgical intervention and supportive care, the 30-day mortality rate remains ~50 %, with ICH survivors frequently displaying neurological impairments and requiring long-term assisted care. Unfortunately, the lack of medical interventions to improve clinical outcomes has led to the notion that ICH is the least treatable form of stroke. Hence, additional studies are warranted to better understand the pathophysiology of ICH. Astrogliosis is an underlying astrocytic response to a wide range of brain injuries and postulated to have both beneficial and detrimental effects. However, the molecular mechanisms and functional roles of astrogliosis remain least characterized following ICH. Herein, we review the functional roles of astrogliosis in brain injuries and raise the prospects of therapeutically targeting astrogliosis after ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cheung RT. Update on medical and surgical management of intracerebral hemorrhage. Rev Recent Clin Trials. 2007;2(3):174–81.

    Article  PubMed  Google Scholar 

  2. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):1450–60.

    Article  PubMed  CAS  Google Scholar 

  3. Mendelow AD, Gregson BA, Mitchell PM, Murray GD, Rowan EN, Gholkar AR. Surgical trial in lobar intracerebral haemorrhage (STICH II) protocol. Trials. 2011;12:124.

    Article  PubMed  Google Scholar 

  4. Broderick JP, Adams Jr HP, Barsan W, Feinberg W, Feldmann E, Grotta J, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 1999;30(4):905–15.

    Article  PubMed  CAS  Google Scholar 

  5. Kim-Han JS, Kopp SJ, Dugan LL, Diringer MN. Perihematomal mitochondrial dysfunction after intracerebral hemorrhage. Stroke. 2006;37(10):2457–62.

    Article  PubMed  CAS  Google Scholar 

  6. Qureshi AI, Ling GS, Khan J, Suri MF, Miskolczi L, Guterman LR, et al. Quantitative analysis of injured, necrotic, and apoptotic cells in a new experimental model of intracerebral hemorrhage. Crit Care Med. 2001;29(1):152–7.

    Article  PubMed  CAS  Google Scholar 

  7. Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Tanaka R. Multivariate analysis of predictors of hematoma enlargement in spontaneous intracerebral hemorrhage. Stroke. 1998;29(6):1160–6.

    Article  PubMed  CAS  Google Scholar 

  8. Broderick JP, Brott TG, Tomsick T, Barsan W, Spilker J. Ultra-early evaluation of intracerebral hemorrhage. J Neurosurg. 1990;72(2):195–9.

    Article  PubMed  CAS  Google Scholar 

  9. Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, Sauerbeck L, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  10. Jauch EC, Lindsell CJ, Adeoye O, Khoury J, Barsan W, Broderick J, et al. Lack of evidence for an association between hemodynamic variables and hematoma growth in spontaneous intracerebral hemorrhage. Stroke. 2006;37(8):2061–5.

    Article  PubMed  Google Scholar 

  11. Hemphill 3rd JC, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001;32(4):891–7.

    Article  PubMed  Google Scholar 

  12. Steiner T, Diringer MN, Schneider D, Mayer SA, Begtrup K, Broderick J, et al. Dynamics of intraventricular hemorrhage in patients with spontaneous intracerebral hemorrhage: risk factors, clinical impact, and effect of hemostatic therapy with recombinant activated factor VII. Neurosurgery. 2006;59(4):767–73. discussion 773–764.

    Article  PubMed  Google Scholar 

  13. Laird MD, Wakade C, Alleyne Jr CH, Dhandapani KM. Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic Biol Med. 2008;45(8):1103–14.

    Article  PubMed  CAS  Google Scholar 

  14. Letarte PB, Lieberman K, Nagatani K, Haworth RA, Odell GB, Duff TA. Hemin: levels in experimental subarachnoid hematoma and effects on dissociated vascular smooth-muscle cells. J Neurosurg. 1993;79(2):252–5.

    Article  PubMed  CAS  Google Scholar 

  15. Wang J, Tsirka SE. Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care. 2005;3(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  16. Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.

    PubMed  CAS  Google Scholar 

  17. Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res. 2005;27(3):268–79.

    Article  PubMed  Google Scholar 

  18. Gong C, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF. Intracerebral hemorrhage-induced neuronal death. Neurosurgery. 2001;48(4):875–82. discussion 882–873.

    PubMed  CAS  Google Scholar 

  19. Qureshi AI, Suri MF, Ostrow PT, Kim SH, Ali Z, Shatla AA, et al. Apoptosis as a form of cell death in intracerebral hemorrhage. Neurosurgery. 2003;52(5):1041–7. discussion 1047–1048.

    Article  PubMed  Google Scholar 

  20. Lee ST, Chu K, Sinn DI, Jung KH, Kim EH, Kim SJ, et al. Erythropoietin reduces perihematomal inflammation and cell death with eNOS and STAT3 activations in experimental intracerebral hemorrhage. J Neurochem. 2006;96(6):1728–39.

    Article  PubMed  CAS  Google Scholar 

  21. Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM. Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology. 2001;40(3):433–9.

    Article  PubMed  CAS  Google Scholar 

  22. Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke. 2003;34(9):2258–63.

    Article  PubMed  Google Scholar 

  23. Lyden PD, Shuaib A, Lees KR, Davalos A, Davis SM, Diener HC, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial. Stroke. 2007;38(8):2262–9.

    Article  PubMed  CAS  Google Scholar 

  24. Betz AL, Iannotti F, Hoff JT. Brain edema: a classification based on blood–brain barrier integrity. Cerebrovasc Brain Metab Rev. 1989;1(2):133–54.

    PubMed  CAS  Google Scholar 

  25. Belloni PN, Carney DH, Nicolson GL. Organ-derived microvessel endothelial cells exhibit differential responsiveness to thrombin and other growth factors. Microvasc Res. 1992;43(1):20–45.

    Article  PubMed  CAS  Google Scholar 

  26. DeMichele MA, Minnear FL. Modulation of vascular endothelial permeability by thrombin. Semin Thromb Hemost. 1992;18(3):287–95.

    Article  PubMed  CAS  Google Scholar 

  27. Malik AB, Fenton 2nd JW. Thrombin-mediated increase in vascular endothelial permeability. Semin Thromb Hemost. 1992;18(2):193–9.

    Article  PubMed  CAS  Google Scholar 

  28. King MD, McCracken DJ, Wade FM, Meiler SE, Alleyne Jr CH, Dhandapani KM. Attenuation of hematoma size and neurological injury with curcumin following intracerebral hemorrhage in mice. J Neurosurg. 2011;115(1):116–23.

    Article  PubMed  CAS  Google Scholar 

  29. Hua Y, Xi G, Keep RF, Wu J, Jiang Y, Hoff JT. Plasminogen activator inhibitor-1 induction after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2002;22(1):55–61.

    Article  PubMed  CAS  Google Scholar 

  30. Sun Z, Zhao Z, Zhao S, Sheng Y, Gao C, Li J, et al. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo. Mol Biol Rep. 2009;36(5):1119–27.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Feng JC, Wu J, Ge YP, Zhang WH, Hu LH, et al. Protective effects of hirudin on acute experimental intracerebral hemorrhage. Zhongguo Zhong Yao Za Zhi. 2006;31(1):69–72.

    PubMed  CAS  Google Scholar 

  32. Lee KR, Colon GP, Betz AL, Keep RF, Kim S, Hoff JT. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg. 1996;84(1):91–6.

    Article  PubMed  CAS  Google Scholar 

  33. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.

    Article  PubMed  Google Scholar 

  34. Perez de la Ossa N, Sobrino T, Silva Y, Blanco M, Millan M, Gomis M, et al. Iron-related brain damage in patients with intracerebral hemorrhage. Stroke. 2010;41(4):810–3.

    Article  PubMed  CAS  Google Scholar 

  35. Mehdiratta M, Kumar S, Hackney D, Schlaug G, Selim M. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke. 2008;39(4):1165–70.

    Article  PubMed  CAS  Google Scholar 

  36. Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 2008;39(12):3372–7.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke. 2011;42(12):3587–93.

    Article  PubMed  Google Scholar 

  38. Chen-Roetling J, Chen L, Regan RF. Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun. 2009;386(2):322–6.

    Article  PubMed  CAS  Google Scholar 

  39. Tower DB, Young OM. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem. 1973;20(2):269–78.

    Article  PubMed  CAS  Google Scholar 

  40. Abbott NJ, Revest PA, Romero IA. Astrocyte-endothelial interaction: physiology and pathology. Neuropathol Appl Neurobiol. 1992;18(5):424–33.

    Article  PubMed  CAS  Google Scholar 

  41. Janzer RC, Raff MC. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature. 1987;325(6101):253–7.

    Article  PubMed  CAS  Google Scholar 

  42. Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H. Induction of various blood–brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia. 1997;19(1):13–26.

    Article  PubMed  CAS  Google Scholar 

  43. Howard JL, Cipolle MD, Anderson M, Sabella V, Shollenberger D, Li PM, et al. Outcome after decompressive craniectomy for the treatment of severe traumatic brain injury. J Trauma. 2008;65(2):380–5. discussion 385–386.

    Article  PubMed  Google Scholar 

  44. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci. 2004;5(5):347–60.

    Article  PubMed  CAS  Google Scholar 

  45. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9(2):260–7.

    Article  PubMed  CAS  Google Scholar 

  46. Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol. 1997;75(10–11):1149–63.

    Article  PubMed  CAS  Google Scholar 

  47. Mahesh VB, Dhandapani KM, Brann DW. Role of astrocytes in reproduction and neuroprotection. Mol Cell Endocrinol. 2006;246(1–2):1–9.

    Article  PubMed  CAS  Google Scholar 

  48. Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells in vitro. Science. 1997;277(5332):1684–7.

    Article  PubMed  CAS  Google Scholar 

  49. Ullian EM, Christopherson KS, Barres BA. Role for glia in synaptogenesis. Glia. 2004;47(3):209–16.

    Article  PubMed  Google Scholar 

  50. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001;291(5504):657–61.

    Article  PubMed  CAS  Google Scholar 

  51. Gordon GR, Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. Glia. 2007;55(12):1214–21.

    Article  PubMed  Google Scholar 

  52. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.

    Article  PubMed  CAS  Google Scholar 

  53. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG. Synaptic islands defined by the territory of a single astrocyte. J Neurosci. 2007;27(24):6473–7.

    Article  PubMed  CAS  Google Scholar 

  54. Ogata K, Kosaka T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience. 2002;113(1):221–33.

    Article  PubMed  CAS  Google Scholar 

  55. O'Callaghan JP. Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed Environ Sci. 1991;4(1–2):197–206.

    PubMed  Google Scholar 

  56. O'Callaghan JP. Biochemical analysis of glial fibrillary acidic protein as a quantitative approach to neurotoxicity assessment: advantages, disadvantages and application to the assessment of NMDA receptor antagonist-induced neurotoxicity. Psychopharmacol Bull. 1994;30(4):549–54.

    PubMed  Google Scholar 

  57. O'Callaghan JP, Jensen KF. Enhanced expression of glial fibrillary acidic protein and the cupric silver degeneration reaction can be used as sensitive and early indicators of neurotoxicity. Neurotoxicology. 1992;13(1):113–22.

    PubMed  Google Scholar 

  58. O'Callaghan JP, Sriram K. Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf. 2005;4(3):433–42.

    Article  PubMed  Google Scholar 

  59. Garcia Samartino C, Delpino MV, Pott Godoy C, Di Genaro MS, Pasquevich KA, Zwerdling A, et al. Brucella abortus induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis. Am J Pathol. 2010;176(3):1323–38.

    Article  PubMed  CAS  Google Scholar 

  60. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47.

    Article  PubMed  CAS  Google Scholar 

  61. Gadea A, Schinelli S, Gallo V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci. 2008;28(10):2394–408.

    Article  PubMed  CAS  Google Scholar 

  62. Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, et al. Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol. 2010;67(4):526–33.

    Article  PubMed  CAS  Google Scholar 

  63. Nishino A, Suzuki M, Ohtani H, Motohashi O, Umezawa K, Nagura H, et al. Thrombin may contribute to the pathophysiology of central nervous system injury. J Neurotrauma. 1993;10(2):167–79.

    Article  PubMed  CAS  Google Scholar 

  64. Shirakawa H, Sakimoto S, Nakao K, Sugishita A, Konno M, Iida S, et al. Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes. J Neurosci. 2010;30(39):13116–29.

    Article  PubMed  CAS  Google Scholar 

  65. Smith C, Berry M, Clarke WE, Logan A. Differential expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 in a scarring and nonscarring model of CNS injury in the rat. Eur J Neurosci. 2001;13(3):443–56.

    Article  PubMed  CAS  Google Scholar 

  66. Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49(6):377–91.

    Article  PubMed  CAS  Google Scholar 

  67. Chen ZJ, Negra M, Levine A, Ughrin Y, Levine JM. Oligodendrocyte precursor cells: reactive cells that inhibit axon growth and regeneration. J Neurocytol. 2002;31(6–7):481–95.

    Article  PubMed  CAS  Google Scholar 

  68. Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997;20(12):570–7.

    Article  PubMed  CAS  Google Scholar 

  69. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23(2):297–308.

    Article  PubMed  CAS  Google Scholar 

  70. Sykova E, Vargova L, Prokopova S, Simonova Z. Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord. Glia. 1999;25(1):56–70.

    Article  PubMed  CAS  Google Scholar 

  71. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24(9):2143–55.

    Article  PubMed  CAS  Google Scholar 

  72. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci. 2008;28(28):7231–43.

    Article  PubMed  CAS  Google Scholar 

  73. Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci. 2009;29(37):11511–22.

    Article  PubMed  CAS  Google Scholar 

  74. Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab. 2003;23(2):137–49.

    Article  PubMed  Google Scholar 

  75. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001;24:1217–81.

    Article  PubMed  CAS  Google Scholar 

  76. Kolker S, Ahlemeyer B, Huhne R, Mayatepek E, Krieglstein J, Hoffmann GF. Potentiation of 3-hydroxyglutarate neurotoxicity following induction of astrocytic iNOS in neonatal rat hippocampal cultures. Eur J Neurosci. 2001;13(11):2115–22.

    Article  PubMed  CAS  Google Scholar 

  77. Landau AM, Luk KC, Jones ML, Siegrist-Johnstone R, Young YK, Kouassi E, et al. Defective Fas expression exacerbates neurotoxicity in a model of Parkinson's disease. J Exp Med. 2005;202(5):575–81.

    Article  PubMed  CAS  Google Scholar 

  78. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci. 2001;21(15):5528–34.

    PubMed  CAS  Google Scholar 

  79. Rothwell NJ, Luheshi GN. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 2000;23(12):618–25.

    Article  PubMed  CAS  Google Scholar 

  80. Swanson RA, Ying W, Kauppinen TM. Astrocyte influences on ischemic neuronal death. Curr Mol Med. 2004;4(2):193–205.

    Article  PubMed  CAS  Google Scholar 

  81. Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  82. Parpura V, Scemes E, Spray DC. Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int. 2004;45(2–3):259–64.

    Article  PubMed  CAS  Google Scholar 

  83. Takahashi M, Billups B, Rossi D, Sarantis M, Hamann M, Attwell D. The role of glutamate transporters in glutamate homeostasis in the brain. J Exp Biol. 1997;200(Pt 2):401–9.

    PubMed  CAS  Google Scholar 

  84. Ardizzone TD, Lu A, Wagner KR, Tang Y, Ran R, Sharp FR. Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke. 2004;35(11):2587–91.

    Article  PubMed  CAS  Google Scholar 

  85. Towfighi A, Greenberg SM, Rosand J. Treatment and prevention of primary intracerebral hemorrhage. Semin Neurol. 2005;25(4):445–52.

    Article  PubMed  Google Scholar 

  86. Kang N, Xu J, Xu Q, Nedergaard M, Kang J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol. 2005;94(6):4121–30.

    Article  PubMed  CAS  Google Scholar 

  87. Carmignoto G, Fellin T. Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus. J Physiol Paris. 2006;99(2–3):98–102.

    Article  PubMed  CAS  Google Scholar 

  88. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, et al. An astrocytic basis of epilepsy. Nat Med. 2005;11(9):973–81.

    PubMed  CAS  Google Scholar 

  89. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86.

    Article  PubMed  CAS  Google Scholar 

  90. Duffy S, MacVicar BA. Modulation of neuronal excitability by astrocytes. Adv Neurol. 1999;79:573–81.

    PubMed  CAS  Google Scholar 

  91. Tashiro A, Goldberg J, Yuste R. Calcium oscillations in neocortical astrocytes under epileptiform conditions. J Neurobiol. 2002;50(1):45–55.

    Article  PubMed  CAS  Google Scholar 

  92. Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N. Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem. 1999;72(6):2334–44.

    Article  PubMed  CAS  Google Scholar 

  93. Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem. 2001;77(6):1601–10.

    Article  PubMed  CAS  Google Scholar 

  94. Muyderman H, Nilsson M, Sims NR. Highly selective and prolonged depletion of mitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitrite. J Neurosci. 2004;24(37):8019–28.

    Article  PubMed  CAS  Google Scholar 

  95. Sukumari-Ramesh S, Laird MD, Singh N, Vender JR, Alleyne Jr CH, Dhandapani KM. Astrocyte-derived glutathione attenuates hemin-induced apoptosis in cerebral microvascular cells. Glia. 2010;58(15):1858–70.

    Article  PubMed  Google Scholar 

  96. Oppenheim RW, Houenou LJ, Parsadanian AS, Prevette D, Snider WD, Shen L. Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J Neurosci. 2000;20(13):5001–11.

    PubMed  CAS  Google Scholar 

  97. Zhao Z, Alam S, Oppenheim RW, Prevette DM, Evenson A, Parsadanian A. Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy. Exp Neurol. 2004;190(2):356–72.

    Article  PubMed  CAS  Google Scholar 

  98. Laird MD, Sukumari-Ramesh S, Swift AE, Meiler SE, Vender JR, Dhandapani KM. Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J Neurochem. 2010;113(3):637–48.

    Article  PubMed  CAS  Google Scholar 

  99. Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22(6):778–84.

    Article  PubMed  Google Scholar 

  100. Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, et al. Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun. 1999;261(1):108–12.

    Article  PubMed  CAS  Google Scholar 

  101. Wang J, Dore S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain. 2007;130(Pt 6):1643–52.

    Article  PubMed  Google Scholar 

  102. Ohnishi M, Katsuki H, Unemura K, Izumi Y, Kume T, Takada-Takatori Y, et al. Heme oxygenase-1 contributes to pathology associated with thrombin-induced striatal and cortical injury in organotypic slice culture. Brain Res. 2010;1347:170–8.

    Article  PubMed  CAS  Google Scholar 

  103. Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, et al. Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke. 2007;38(12):3280–6.

    Article  PubMed  CAS  Google Scholar 

  104. Wagner KR, Dwyer BE. Hematoma removal, heme, and heme oxygenase following hemorrhagic stroke. Ann N Y Acad Sci. 2004;1012:237–51.

    Article  PubMed  CAS  Google Scholar 

  105. Gong Y, Hua Y, Keep RF, Hoff JT, Xi G. Intracerebral hemorrhage: effects of aging on brain edema and neurological deficits. Stroke. 2004;35(11):2571–5.

    Article  PubMed  Google Scholar 

  106. Lee JC, Cho GS, Choi BO, Kim HC, Kim WK. Aging exacerbates intracerebral hemorrhage-induced brain injury. J Neurotrauma. 2009;26(9):1567–76.

    Article  PubMed  Google Scholar 

  107. Nakamura T, Xi G, Hua Y, Schallert T, Hoff JT, Keep RF. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J Cereb Blood Flow Metab. 2004;24(5):487–94.

    Article  PubMed  Google Scholar 

  108. Foerch C, Niessner M, Back T, Bauerle M, De Marchis GM, Ferbert A, et al. Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clin Chem. 2012;58(1):237–45.

    Article  PubMed  CAS  Google Scholar 

  109. Delgado P, Alvarez Sabin J, Santamarina E, Molina CA, Quintana M, Rosell A, et al. Plasma S100B level after acute spontaneous intracerebral hemorrhage. Stroke. 2006;37(11):2837–9.

    Article  PubMed  CAS  Google Scholar 

  110. Foerch C, Curdt I, Yan B, Dvorak F, Hermans M, Berkefeld J, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry. 2006;77(2):181–4.

    Article  PubMed  CAS  Google Scholar 

  111. James ML, Blessing R, Phillips-Bute BG, Bennett E, Laskowitz DT. S100B and brain natriuretic peptide predict functional neurological outcome after intracerebral haemorrhage. Biomarkers. 2009;14(6):388–94.

    Article  PubMed  CAS  Google Scholar 

  112. Dvorak F, Haberer I, Sitzer M, Foerch C. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis. 2009;27(1):37–41.

    Article  PubMed  CAS  Google Scholar 

  113. Li H, Wang SR, Wang LK, Chen XF, Zhao CJ, Duan S, et al. Perihematomal pathological changes in neurons and astrocytes following acute cerebral hemorrhage. Int J Neurosci. 120(11):683–90.

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeetha Sukumari-Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukumari-Ramesh, S., Alleyne, C.H. & Dhandapani, K.M. Astrogliosis: a Target for Intervention in Intracerebral Hemorrhage?. Transl. Stroke Res. 3 (Suppl 1), 80–87 (2012). https://doi.org/10.1007/s12975-012-0165-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0165-x

Keywords

Navigation