Skip to main content
Log in

Anti-oxidative potential of boiling soluble antioxidant enzymes inAmelioration of drought-induced oxidative stress in tolerant and sensitive cultivars of Triticum aestivum

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Drought is one of the most important abiotic stress factors that limit plant growth and productivity but studies documenting how drought stress regulates boiling soluble antioxidants in cultivars differing in drought tolerance has not been critically evaluated. In this study, we analysed the indices of oxidative stress H2O2, O2-, Membrane Injury Index (MII), Membrane Stability Index (MSI) and lipid peroxidation (MDA) and activities of ROS-scavenging boiling soluble antioxidant enzymes in caryopses of sensitive and tolerant cultivars of wheat at different stages of development. Water Content (WC) recorded a decline in both the sensitive cvs. PBW 621 and 343 while in tolerant cvs. PBW 175 and 527, it remained unresponsive to drought conditions at 35 DPA. Oxidative stress indicators increased in a cultivar genotype and developmental stage dependent manner under stress. MII increased in all the cultivars under stress conditions in a stage specific manner. Basal activities of various boiling soluble antioxidants like BsMDAR, BsCAT, BsAPX, and BsGR were significantly higher in caryopses of tolerant cvs. PBW 527 and 175 as compared to sensitive cvs.PBW 343 and 621. Activities of BsMDAR, BsGST, BsPDI, BsGR, BsSOD, BsGPX, and BsAPX were induced or increased in the tolerant cvs. PBW 527 and 175 under drought stress while nil or decreased activities were detected in the sensitive cvs. PBW 343 and 621 at different developmental stages. Based upon our findings, it can be inferred that tolerant cultivars may have more biochemical capacity to perform biological antioxidative reactions to combat drought-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedi T, Pakniyat H. 2010. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napusL.). Czech J. Genet.Plant Breed. 46: 27–34

    CAS  Google Scholar 

  • Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 55: 373–399

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC. 2002. Oxidative stress and antioxidative system in plants. Curr. Sci. 82: 1227–1238

  • Aspinall D, Paramaswaran KVM, Graham RD. 1983. Proline accumulation in grains, floral organs and flag leaves of wheat and barley in response to variation in water and nitrogen supply. Irrigation Sci. 4: 157–166

    Article  Google Scholar 

  • Barka EA. 2001. Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon esculen-tum) fruits in response to low amounts of UV-C. Aust. J. Plant Physiol. 28: 785–791.

    CAS  Google Scholar 

  • Barlow EWR, Lee JE, Munns R, Smart MG. 1980. Water relations of the developing grains. Aust. J. Plant Physiol.7: 519–525

    Article  Google Scholar 

  • Barranco-Medina S, Krell T, Finkemeier I, Sevilla F, Lazaro JJ, Dietz KJ. 2007. Biochemical and molecular characteri-zation of the mitochondrial peroxiredoxin PsPrxII F from Pisumsativum. Plant Physiol. Biochem. 45: 729–739

    Article  CAS  PubMed  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias A. 2008. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148: 6–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benavides MP, Marconi PL, Gallego SM, Comba ME, Tomaro ML. 2000. Relationship between antioxidant defense systems and salt tolerance in Solanum tubero-sum.Aust. J. Plant Physiol. 27: 273–278

    CAS  Google Scholar 

  • Bhardwaj J, Yadav SK. 2012. Comparative study on bio-chemical parameters and antioxidant enzymes in drought tolerant and sensitive variety of Horsegram (Macrotyloma uniflorum) under drought stress. Am. J. Plant Physiol.7: 17–29

    Article  CAS  Google Scholar 

  • Bian S, Jiang Y. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci. Hortic. Amsterda. 120: 264–270

    Article  CAS  Google Scholar 

  • Blum A, Ebercon A. 1981. Cell membrane stability as meas-ure of drought and heat tolerance in wheat. Crop Sci. 21: 43–47

    Article  Google Scholar 

  • Broin M, Cuine S, Peltier G, Rey P. 2000. Involvement of CDSP32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Letter. 467: 245–248

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Oliviera JTA, Martins-Miranda AS, Viegas RA, Silveira JAG. 2004. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt stressed cowpea leaves. New Phytol.163: 563–571

    Article  CAS  Google Scholar 

  • Chakraborty U, Pradhan B. 2012. Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense sys-tem, water stress responsive metabolites and H2O2 accu-mulation. Braz. Soc. Plant Physiol. 24: 17–130

    Google Scholar 

  • Chaves M, Oliveira M. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 55: 2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chawla S, Jain S, Jain V. 2013. Salinity induced oxidative stress and antioxidant system in salt tolerant and salt sen-sitive cultivars of rice (Oryza sativa L.). J.Plant Biochem. Biotechnol. 22: 27–34

    Article  CAS  Google Scholar 

  • Chi YH, Paeng SK, Kim MJ, Hwang GY, Melencion SMB, Oh HT, Lee SY. 2013. Redox dependent functional switching of plant proteins accompanying with their struc-tural changes. Front. Plant Sci. 4: 1–7

    Article  Google Scholar 

  • Dacosta M, Huang B. 2007. Changes in antioxidant enzyme activities and lipid peroxidation for bent grass species in responses to drought stress. J. Am. Soc. Hortic. Sci. 132: 319–326

    CAS  Google Scholar 

  • Devi R, Kaur N, Gupta AK. 2011. Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian J. Biochem.Bio.49: 257–265

    Google Scholar 

  • Dixon DP, Davis BG, Edwards R. 2002. Functional diver-gence in the glutathione transferase superfamily in plants: identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J. Biol. Chem. 277: 30859–30869

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadian A, Sanavy S, Chashmi NA. 2008. The effects of foliar application of ascorbic acid (Vitamin C) on antioxidant enzyme activities, lipid peroxidation and pro-line accumulation of canola (Brassica napus. L) under conditions of salt stress. J. Agron. Crop Sci. 194: 206–213

    Article  CAS  Google Scholar 

  • Edwards EA, Enard C, Creissen GP, Mullineaux PM. 1994. Synthesis and properties of glutathione reductase in stressed peas. Plant. 192: 137–143

    CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K. 2007. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Plant. 225: 1255–1264

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G. 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxi-somes and mitochondria. Physiol. Plant. 119: 355–364

    Article  CAS  Google Scholar 

  • Gao CJ, Xing D, Li L, Zhang LR. 2008. Implication of reac-tive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Plant. 227: 755–767

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK.1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59: 309

  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxi-dant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909–930

    Article  CAS  PubMed  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481–494

    Article  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Clark RJ, Horibe T, Renda RF, Anderson MA, Craik DJ. 2007. A novel plant protein disulphide isomerase involved in the oxidative folding of cystine knot defense proteins. J. Exp. Chem. 282: 20435–20446

    CAS  Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q. 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol. Biochem. 44: 828–836

    Article  CAS  PubMed  Google Scholar 

  • Habig WH, Jacoby WB. 1981. Methods in Enzymology. In SP Colowick, NO Kaplan Eds, Academic Press New York

  • Holmgren A. 1979. Reduction of disulfides by thioredox-in.Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J. Biol. Chem. 254: 9113–9119

    CAS  PubMed  Google Scholar 

  • Hossain MA, Nakano Y, Asada K. 1984 Monodehydro-ascorbate reductase in spinach chloroplast and its partici-pation in regeneration of ascorbate for scavenging of hydrogen peroxide. Plant Cell Physiol. 25: 385–395

    CAS  Google Scholar 

  • Hossain MA, Ismail MR, Uddin MK, Islam MZ, Ashrafuzzaman M. 2013. Efficacy of acorbate-glutathione cycle for scavenging H2O2 in two contrasting rice geno-types during salinity stress. Aust. J. Crop Sci. 7: 1801–1808

    Google Scholar 

  • Houston NL, Fan C, Xiang QY, Schulze JM, Jung R, Boston RS. 2005. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including sin-gle-domain protein disulfide isomerase-related proteins. Plant Physiol. 137: 762–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang B, Rachmilevitch S, Ju J. 2012. Root carbon and pro-tein metabolism associated with heat tolerance. J. Exp. Bot. doi.10.1093/jxb/ers003

    Google Scholar 

  • Hacobsen JV, Shaw DC.1989. Heat-soluble proteins and abscisic acid action in barley aleurone cells. Plant Physiol. 91: 1520–1526

    Article  Google Scholar 

  • Iang M, Zhang J. 2001. Effect of abscisic acid on active oxy-gen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 42: 1265–1273

    Article  Google Scholar 

  • Khanna-Chopra R, Selote DS. 2007. Acclimation to drought stress generates oxidative stress tolerance in drought resistant than susceptible wheat cultivar under field conditions. Environ. Expt. Bot. 60: 276–283

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Nikam TD, Jawali N, Shitolea MG. 2009. Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance. Arch. Agron. Soil Sci. 55: 379–394

    Article  CAS  Google Scholar 

  • Lee DH, LeeCB. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159: 75–85.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Jiao J, Wang G. 2004. The important roles of ROS in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress. Plant Sci.166: 303–315

    Article  CAS  Google Scholar 

  • Li Y, Yi H. 2012. Effect of sulphur dioxide on ROS produc-tion, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol. Biochem. 58: 46–53

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J.Biol. Chem. 193: 265–275

    CAS  PubMed  Google Scholar 

  • Lu P, Sang WG, Ma KP. 2008. Differential responses of the activities of antioxidant enzymes to thermal stresses between two invasive eupatorium species in China. J.Integr.Biol.doi: 10.1111/j.1744-7909.2007. 00583.x

    Google Scholar 

  • Luthman M, Holmgren A. 1982. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistr. 21: 6628–6633

    Article  CAS  Google Scholar 

  • Ma H, Song L, Huang Z, Yang Y, Wang S, Wang Z, Tong J, Gu W, Ma H, Xiao L. 2014. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA open proteomic. 4: 40–57

    Article  CAS  Google Scholar 

  • Mandhania S, Madan S, Sawhney V. 2006. Antioxidant defense mechanism under salt stress in wheat seedlings. Biol. Plant. 50: 227–231

    Article  CAS  Google Scholar 

  • Marti MC, Flores-Sarasa I, Camejo D, Ribas-Carbo M, Lazaro JJ, et al. 2011. Response of mitochondrial thiore-doxin PsTrxo1, antioxidant enzymes and respiration to salinity in pea (Pisum sativum L) leaves. J. Exp. Bot. 62: 3863–3874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R. 2008. Reactive oxygen sig-nalling and abiotic stress. Plant Physiol. 133: 481–489

    Article  CAS  Google Scholar 

  • Mirzaee M, Moieni A, GhanatiF. 2013. Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. J. Agr. Sci. Tech. 15: 593–602

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV. 2004. Reactive oxygen gene network of plants.Trends Plant Sci. 9: 490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.7: 405–410

    Article  CAS  PubMed  Google Scholar 

  • Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB. 2009. Thioredoxin targets in plants. The first 30 years. J. Proteomic. 72: 452–474

    Article  CAS  Google Scholar 

  • Moons A. 2005. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam. Horm. 72: 155–202

    Article  CAS  PubMed  Google Scholar 

  • Mutlu S, Atici O, Nalbantoglu B. 2009. Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biol. Plant. 53: 334–338

    Article  CAS  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG. 2007. Antioxidant gene responses to ROS-generating xenobiotics in devel-oping and germinated scutella of maize. J.Exp. Bot. 58: 1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Omidi H. 2010. Changes of proline content and activity of antioxidative enzymes in two canola genotype under drought stress. Amer. J. Plant Physiol. 5: 338–349

    Article  CAS  Google Scholar 

  • Pal M, Singh DK, Rao LS, Singh KP. 2004. Photosynthetic characteristics and activity of antioxidant enzymes in salinity tolerant and sensitive rice cultivars. Indian J. Plant Physiol. 9: 407–412

    CAS  Google Scholar 

  • Pelah D, Shoseyov O, Altman A.1995. Characterization of BspA, a major boiling soluble water stress responsive pro-tein in Aspen (Populus tremula). Tree Physiol. 15:673–678

  • Reynolds MP, Oritz-Monasterio JI, Mc Nab A. 2001. Application of physiology in wheat breeding, CIMMYT, Mexico

    Google Scholar 

  • Ristic Z, Gillford DJ, Cass DD. 1991. Heat shock proteins in two lines of Zea mays L. that differ in drought and heat resistance.Plant Physiol. 97: 1430–1434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rout MP, Shaw BP. 2001. Salt tolerance in aquatic macro-phytes: possible involvement of the antioxidative enzymes. Plant Sci. 160: 415–423

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Deshmukh PS, Shukla DS. 1997. Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J. Agron. Crop. Sci.178: 171–177

    Article  CAS  Google Scholar 

  • Santos MG, Rieiro RV, Machado EC, Pimentel C. 2009. Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. Biol. Plant. 53: 229–236

    Article  CAS  Google Scholar 

  • Schaedle M, Bassham JA. 1977. Chloroplast glutathione reductase. Plant Physiol. 59: 1011–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrato AJ, Cejudo FJ. 2003. Type h thioredoxins accumulate in the nucleus of developing wheat seeds tissues suffering oxidative stress. Plant. 217: 392–399

    Article  CAS  Google Scholar 

  • Sharma AD, Rakhra G, Mehta A, Mamik S. 2014. Accumulation of class III type of boiling soluble peroxi-dases in response to plant growth hormone ABA in Triticum aestivum cultivars. Plant Sci. Toda. 1: 3–9.

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J. Bot. doi.10.1155/2012/217037

    Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M. 2008. Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ. 31: 1086–1096

    Article  CAS  PubMed  Google Scholar 

  • Terzi R, Kadioglu A. 2006. Drought stress tolerance and the antioxidant enzyme system in Ctenanthe Setosa. Acta Biol. Cracov.48: 89–96

    Google Scholar 

  • Tian Z, Wang F, Zhang W, Liu C, Zhao X. 2012. Antioxidant mechanism and lipid peroxidation patterns in leaves and petals of marigold in response to drought stress. Hortic.Environ. Biotechnol. 53: 183–192

    Article  CAS  Google Scholar 

  • Xu C, Huang B. 2008. Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tol-erance. J. Exp. Bot. 59: 4183–4194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Dev Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhra, G., Sharma, A.D. & Singh, J. Anti-oxidative potential of boiling soluble antioxidant enzymes inAmelioration of drought-induced oxidative stress in tolerant and sensitive cultivars of Triticum aestivum . J. Crop Sci. Biotechnol. 18, 103–122 (2015). https://doi.org/10.1007/s12892-015-0006-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-015-0006-z

Keywords

Navigation