Skip to main content
Log in

Biogenesis of PbS Nanocrystals by Using Rhizosphere Fungus i.e., Aspergillus sp. Isolated from the Rhizosphere of Chickpea

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanocrystals of PbS were synthesized by using Aspergillus sp. isolated from the rhizosphere of Chickpea. For this, PbS-tolerant fungi were isolated from the rhizosphere soil by serial dilution method and plated on potato dextrose agar supplemented with 1 mM lead acetate and 0.1 % sodium sulfide. PbS-tolerant fungus was identified as Aspergillus sp. by fluorescence microscopy. The PbS nanocrystals were characterized by UV-visible absorption spectroscopy, x-ray diffraction (XRD), particle size analyzer (PSA), and transmission electron microscope (TEM). UV-visible absorption scan revealed a peak at 300 nm, a characteristic of the nanosize range. Characteristic peaks at around 26° and 30° were observed in XRD analysis of samples of fungal fabricated quantum dots. Crystallite size as determined from transmission electron microscopy was found to be in the range of 10–15 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torres, S. K., Campos, V. L., León, C. G., Rodríguez-Llamazares, S. M., Rojas, S. M., González, M., et al. (2012). Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. Journal of Nanoparticle Research, 14, 1236. doi:10.1007/s11051-012-1236-3.

    Article  Google Scholar 

  2. Du, L., Xian, L., Feng, J. X. (2011). Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. Journal of Nanoparticle Research, 13, 921–930. doi:10.1007/s11051-010-0165-2.

    Article  Google Scholar 

  3. Nayak, R. R., Pradhan, N., Behera, D., Pradhan, K. M., Mishra, S., Sukla, L. B., et al. (2011). Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. Journal of Nanoparticle Research, 13, 3129–3137. doi:10.1007/s11051-010-0208-8.

    Article  Google Scholar 

  4. Kumar, R. R., Priyadharsani, K. P., Thamaraiselvi, K. (2012). Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. Journal of Nanoparticle Research, 14, 860. doi:10.1007/s11051-012-0860-2.

    Article  Google Scholar 

  5. Ganachari, S. V., Bhat, R., Deshpande, R., Venkataraman, A. (2012). Extracellular biosynthesis of silver nanoparticles using fungi penicillium diversum and their antimicrobial activity studies. BioNanoScience, 2, 316–321. doi:10.1007/s12668-012-0046-5.

    Article  Google Scholar 

  6. Pugazhenthiran, N., Anandan, S., Kathiravan, G., Udaya Prakash, N. K., Crawford, S., Ashokkumar, M. (2009). Microbial synthesis of silver nanoparticles by Bacillus sp. Journal of Nanoparticle Research, 11, 1811–1815. doi:10.1007/s11051-009-9621-2.

    Article  Google Scholar 

  7. Ingle, A., Rai, M., Gade, A., Bawaskar, M. (2009). Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11, 2079–2085. doi:10.1007/s11051-008-9573-y.

    Article  Google Scholar 

  8. Srivastava, S. K., & Constanti, M. (2012). Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. Journal of Nanoparticle Research, 14, 831. doi:10.1007/s11051-012-0831-7.

    Article  Google Scholar 

  9. Mohanpuria, P., Rana, N. K., Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517. doi:10.1007/s11051-007-9275-x.

    Article  Google Scholar 

  10. Kalishwaralal, K., Deepak, V., Pandian, S. R., Kottaisamy, M., Kanth, S. M., Kartikeyan, B., et al. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerfaces, 77, 257–262. doi:10.1016/j.colsurfb.2010.02.007.

    Article  Google Scholar 

  11. Sadhasivam, S., Shanmugam, P., Yun, K. S. (2010). Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces, 81, 358–362. doi:10.1016/j.colsurfb.2010.07.036.

    Article  Google Scholar 

  12. Bai, H. J., Zhang, Z. M., Guo, Y., Yang, G. E. (2009). Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B: Biointerfaces, 70, 142–146. doi:10.1016/j.colsurfb.2008.12.025.

    Article  Google Scholar 

  13. Kowshik, M., Vogel, W., Urban, J., Kulkarni, S. K., Paknikar, K. M. (2002). Microbial synthesis of semiconductor PbS nanocrystallites. Advanced Materials, 14, 815–818. doi:10.1002/1521-4095(20020605).

    Article  Google Scholar 

  14. Seshadri, S., Saranya, K., Kowshik, M. (2011). Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast. Rhodosporidium diobovatum. Biotechnology Progress, 27, 1464–1469. doi:10.1002/btpr.651.

    Article  Google Scholar 

  15. Wong, K. K. W., & Mann, S. (1996). Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. Advanced Materials, 8, 928–932. doi:10.1002/adma.19960081114.

    Article  Google Scholar 

  16. Hennequin, B., Turyanska, L., Ben, T., Beltran, A. M., Molina, S. I., Li, M., et al. (2008). Aqueous near infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots. Advanced Materials, 20, 3592–3596. doi:10.1002/adma.200800530.

    Article  Google Scholar 

  17. Chan, W. C., & Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016–2018. PMID: 9748158.

    Article  Google Scholar 

  18. Bruchez, M. J., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016. PMID: 9748157.

    Article  Google Scholar 

  19. Salle, A. J. (1973). Laboratory manual of fundamental principles of bacteriology (p. 201). New York: McGraw-Hill.

    Google Scholar 

  20. Barnett, H. L., & Hunter, B. B. (1972). Illustrated general of imperfect fungi (3rd ed.). Minnesota: Burgess Publishing Co. 241.

    Google Scholar 

  21. Hood, M. E., & Shew, H. D. (1996). Application of KOH-aniline blue fluorescence in the study of plants-fungal interactions. Phytopathology, 86, 704–708.

    Article  Google Scholar 

  22. Gong, J., Zang, Z. M., Bai, H. J., Yang, G. E. (2007). Microbiological synthesis of nanophase PbS by Desulfotomaculum sp. Science China Series E-Technology Science, 50, 302–307. doi:10.1007/s11431-007-0045-x.

    Article  Google Scholar 

  23. Eflink, M. R., & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analytical Biochemistry, 114, 199–227. doi:10.1016/0003-2697(81)90474-7.

    Article  Google Scholar 

  24. Jain, P., & Pradeep, T. (2005). Potential of silver nanoparticles-coated polyurethane foam as an antibacterial water filter. Biotechnology Bioengineering, 90, 59–63. doi:10.1002/bit.20368.

    Article  Google Scholar 

  25. Henglein, A. (1989). Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews, 89, 1861–1873. doi:10.1021/Cr00098a010.

    Article  Google Scholar 

  26. Greenwood, R., & Kendall, K. J. (1999). Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. European Ceramics Society, 19, 479–488. doi:10.1016/S0955-2219(98)00208-8.

    Article  Google Scholar 

  27. Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., Khan, M. I., Kumar, R., et al. (2002). Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. Journal of the American Chemical Society, 124, 12108–12109. doi:10.1021/ja027296o.

    Article  Google Scholar 

  28. Patravale, V. B., Date, A. A., Kulkarni, R. M. (2004). Nanosuspensions: a promising drug delivery strategy. Journal of Pharmacy and Pharmacology, 56(2004), 827–840. doi:10.1211/0022357023691.

    Article  Google Scholar 

  29. http://www.malvern.com/LabEng/technology/dynamic light scattering/dynamic light scattering.htm (accessed 10.08.11).

  30. Yaghini, E., Seifalian, A. M., MacRobert, A. J. (2009). Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine (London, England), 4, 353–363. doi:10.2217/nnm.09.9.

    Article  Google Scholar 

  31. Shao, L., Gao, Y., Yan, F. (2011). Semiconductor quantum dots for biomedicial applications. Sensors, 11, 11736–11751. doi:10.3390/s111211736.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Sophisticated Advanced Instrument Facility, All India Institute of Medical Sciences, New Delhi for TEM characterization, and the Department of Science and Technology, New Delhi for providing the financial support for carrying out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Jain, P., Kumar, A. et al. Biogenesis of PbS Nanocrystals by Using Rhizosphere Fungus i.e., Aspergillus sp. Isolated from the Rhizosphere of Chickpea. BioNanoSci. 4, 189–194 (2014). https://doi.org/10.1007/s12668-014-0135-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0135-8

Keywords

Navigation