Skip to main content
Log in

Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biologic properties of Se nanoparticles, e.g., antioxidant activity, are dependent on the nanoparticle size; smaller particles have greater activity. In this study, the bio-reduction of selenite by Pantoea agglomerans strain UC-32 under aerobic conditions and room temperature to produce bioactive Se nanoparticles smaller than 100 nm was demonstrated. Isolation and purification of the nanoparticles was performed by alkaline lysis. These purified nanoparticles were stabilized with l-cysteine (4 mM). The visualization and characterization of nanoparticles were performed by transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy. The antioxidant activity of nanoparticles was determined by production of reactive oxygen species using human umbilical vein endothelial cells. Transmission electron microscopy images showed the accumulation of spherical selenium nanoparticles as intracellular and extracellular deposits. The size of Se nanoparticles varied with incubation time. Amorphous Se nanoparticles with size in the order of 100 nm were obtained before 24 h of incubation; but, at 24 h of incubation, the size of the majority of the nanoparticles was in the desirable order of 100 nm and they were not aggregated. Energy dispersive spectroscopy spectra indicated that nanoparticles were composed entirely of selenium. Antioxidant activity of stabilized selenium nanoparticles demonstrated high antioxidant activity when compared to selenite and selenium nanoparticles without stabilization. Stabilized biologically synthetized selenium (0) nanoparticles with size less than 100 nm have a potential application as a food additive with antioxidant properties relevant to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belzile N, Wu J, Chen Y, Appanna VD (2006) Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens. Sci Total Environ 367:704–714

    Google Scholar 

  • Burriel F, Lucena F, Arribas S, Hernández J (1994) Química analítica cualitativa. Paraninfo, Madrid

    Google Scholar 

  • Casanello P, Krause B, Torres E, Gallardo V, González M, Prieto C, Escudero C, Farías M, Sobrevia L (2009) Reduced l-arginine transport and nitric oxide synthesis in human umbilical vein endothelial cells from intrauterine growth restriction pregnancies is not further altered by hypoxia. Placenta 30:625–633

    Article  CAS  Google Scholar 

  • Chen Z, Shen Y, Xie A, Zhu J, Wu Z, Huang F (2009) l-Cysteine-assisted controlled synthesis of selenium nanospheres and nanorods. Cryst Growth Des 9:1327–1333

    Article  CAS  Google Scholar 

  • Dhanjal S, Cameotra S (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:1–11

    Article  Google Scholar 

  • Escalante G, Campos VL, Valenzuela C, Yañez J, Zaror C, Mondaca MA (2009) Arsenic resistant bacteria isolated from arsenic contaminated river in the Atacama Desert (Chile). Bull Environ Contam Toxicol 83:657–661

    Google Scholar 

  • Fesharaki P, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Reza A (2009) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461–466

    Article  Google Scholar 

  • Gao X, Zhang J, Zhang L (2002) Hollow sphere selenium nanoparticles. Their in vitro anti-hydroxyl radical effect. Adv Mater 14:290–293

    Article  CAS  Google Scholar 

  • Garbisu C, Ishii-Terrance T, Buchanan B (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204

    Article  CAS  Google Scholar 

  • González M, Flores C, Pearson JD, Casanello P, Sobrevia L (2004) Cell signalling-mediating insulin increase of mRNA expression for cationic amino acid transporters 1 and 2, and membrane hyperpolarization in human umbilical vein endothelium. Pflugers Arch Eur J Physiol 448:383–394

    Google Scholar 

  • Hapuarachchi S, Swearingen J, Chasteen T (2004) Determination of elemental and precipitated selenium production by a facultative anaerobe grown under sequential anaerobic/aerobic conditions. Process Biochem 39:1607–1613

    Article  CAS  Google Scholar 

  • Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of Nano-Se in vitro. Free Radic Bio Med 35:805–813

    Article  CAS  Google Scholar 

  • Klonowska A, Heulin T, Vermeglio A (2005) Selenite and Tellurite Reduction by Shewanella oneidensis. Appl Environ Microbiol 71:5607–5609

    Article  CAS  Google Scholar 

  • Li Q, Chen T, Yang F, Liu J, Zheng W (2010) Facile and controllable one-step fabrication of selenium nanoparticles assisted by l-cysteine. Mater Lett 64:614–617

    Article  CAS  Google Scholar 

  • Li Y, Li X, Wong Y, Chen T, Zhang H, Liu C, Zheng W (2011) The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 32:9068–9076

    Article  CAS  Google Scholar 

  • Mishra B, Priyadarsini K, Mohan H (2005) Formation of redox active nanoselenium on reactions of oxiding free radicals with selenourea. Found Day 273:262–267

    Google Scholar 

  • Mohampuria P, Rana N, Kumar Y (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  Google Scholar 

  • Okuno T, Kubota T, Ueno H, Nakamuro K (2001) Contribution of enzymic [alpha], [gamma]-elimination reaction in detoxification pathway of selenomethionine in mouse liver. Toxicol Appl Pharmacol 176:18–23

    Article  CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Switzer-Blum J, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  Google Scholar 

  • Peng D, Zhang J, Liu Q, Taylor EW (2007) Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101:1457–1463

    Article  CAS  Google Scholar 

  • Prakash N, Sharma N, Prakash R, Raina K, Fellowes J, Pearce C, Lloyd J, Pattrick R (2009) Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol Lett 31:1857–1862

    Article  CAS  Google Scholar 

  • Tam K, Ho C, Lee J, Min-Lai C, Rheem Y, Chen W, Myung NV (2010) Growth Mechanism of Amorphous Selenium Nanoparticles Synthesized by Shewanella sp. HN-41. Biosci Biotechnol Biochem 74:696–700

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2009) Biological synthesis of metallic nanoparticles. Nanomedicine: NBM 6:257–262

    Article  Google Scholar 

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    Article  CAS  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B 80:94–102

    Article  CAS  Google Scholar 

  • Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z (2011) Colorimetric detection of Cd2 + using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and l-cysteine. Analyst 136:3725–3730

    Article  CAS  Google Scholar 

  • Yadav V, Sharma N, Prakash R, Raina K, Bharadwaj LM, Prakas N (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnol 7:299–304

    Article  CAS  Google Scholar 

  • Ye G, Metreveli N, Ren J, Epstein N (2003) Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 52:777–783

    Article  CAS  Google Scholar 

  • Zhang J, Wang W, Yongping B, Zhang L (2004a) Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci 75:237–244

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang J, Wang HY, Chen HY (2004b) Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater Lett 58:2590–2594

    Article  CAS  Google Scholar 

  • Zhang J, Wang H, Yan X, Zhang L (2005) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76:1099–1109

    Article  CAS  Google Scholar 

  • Zhang W, Chena Z, Liua H, Zhang L, Gaoa P, Daping L (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B 88:196–201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance of the staff of Electron Microscopy Laboratory of the University of Concepción, Chile. This work was supported by DIUC- 208.036.035-1.0 (Chile), Proyecto Basal Conicyt-Regional R08C1002 Chile), and FONDECYT 11100192 (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, S.K., Campos, V.L., León, C.G. et al. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res 14, 1236 (2012). https://doi.org/10.1007/s11051-012-1236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1236-3

Keywords

Navigation