Skip to main content
Log in

Influence of Milling Parameters on Surface Roughness of Al–SiC–B4C Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Surface roughness is one of the important factors which help to address the quality needs of composite materials, and it relies on the machining conditions. This paper carried out an experimental investigation to identify the influence of machining parameters on surface roughness of aluminum metal matrix composites. Stir casting technique is used to produce SiC- and B4C-reinforced aluminum composites with three different compositions. Using end mill cutter, the materials are machined with different combination of machining parameters. To assess the quality of machined surface, roughness of machined surface is measured with the help of surface roughness testing machine. The obtained results have been analyzed to optimize cutting parameters using Taguchi and ANOVA techniques. The experimental results confirm the order of most influential milling parameters as 0.1 mm/rev feed rate, 3000 rpm spindle speed and 0.2 mm depth of cut with maximum contribution percentages of 86.6%, 9.75% and 6.16%, respectively. This study would ensure the optimal parameters for quality products in terms of surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chatterjee B, and Bhowmik S, Sustainable Engineering Products and Manufacturing Technologies, Elsevier (2019) p 199.

  2. Koli D K, Agnihotri G, and Purohit R, Mater Today Proc2 (2015) 3032.

    Google Scholar 

  3. Kaviyarasan K, Pridhar T, Sureshbabu B, Boopathi C, and Srinivasan R, IOP Conference Series: Materials Science and Engineering, IOP Publishing (2018), p 012148.

  4. Seeman M, Ganesan G, Karthikeyan R, and Velayudham A, Int J Adv Manuf Technol48 (2010) 613.

    Article  Google Scholar 

  5. El-Gallab M, and Sklad M, J Mater Process Technol83 (1998) 151.

    Article  Google Scholar 

  6. Churyumov A Y, and Mohamed I, Met Sci Heat Treat60 (2019) 571.

    Article  CAS  Google Scholar 

  7. Panwar N, and Chauhan A, Mater Today Proc5 (2018) 5933.

    CAS  Google Scholar 

  8. Hashim J, Looney L, and Hashmi M, J Mater Process Technol123 (2002) 251.

    Article  CAS  Google Scholar 

  9. Ozben T, Kilickap E, and Cakır O, J Mater Process Technol198 (2008) 220.

    Article  CAS  Google Scholar 

  10. Pawar P, and Utpat A A, Proc Mater Sci6 (2014) 1150.

    Article  CAS  Google Scholar 

  11. Rao C P, Bhagyashekar M, Chandra P, and Ravikumar D, Mater Today Proc5 (2018) 24770.

    Google Scholar 

  12. Palanikumar K, and Karthikeyan R, Mater Des28 (2007) 1584.

    Article  CAS  Google Scholar 

  13. Altunpak Y, Ay M, and Aslan S, Int J Adv Manuf Technol60 (2012) 513.

    Article  Google Scholar 

  14. Suresh P, Marimuthu K, Ranganathan S, and Rajmohan T, Trans Nonferrous Met Soc China24 (2014) 2805.

    Article  CAS  Google Scholar 

  15. Karabulut Ş, Measurement66 (2015) 139.

    Article  Google Scholar 

  16. Lin K, Wang W, Jiang R, Xiong Y, and Song G, Int J Adv Manuf Technol88 (2017) 887.

    Article  Google Scholar 

  17. Reddy N S K, Kwang-Sup S, and Yang M, J Mater Process Technol201 (2008) 574.

    Article  CAS  Google Scholar 

  18. Sahin Y, Mater Des24 (2003) 671.

    Article  CAS  Google Scholar 

  19. Kuram E, and Ozcelik B, Measurement46 (2013) 1849.

    Article  Google Scholar 

  20. Said M S, Ghani J A, Selamat M A, Wan N N I, and Che HC, Key Engineering Materials. Trans Tech Publ (2016), p 200.

  21. Dabade U A, Sonawane H A, and Joshi S S, Mach Sci Technol14 (2010) 258.

    Article  CAS  Google Scholar 

  22. Gopal P, and Prakash K S, Measurement116 (2018) 178.

    Article  Google Scholar 

  23. Pillai J U, Sanghrajka I, Shunmugavel M, Muthuramalingam T, Goldberg M, and Littlefair G, Measurement124 (2018) 291.

    Article  Google Scholar 

  24. Tamiloli N, Venkatesan J, Murali G, Kodali S P, Kumar T S, and Arunkumar M, SN Appl Sci1 (2019) 1204.

    Article  Google Scholar 

  25. Bhuvanesh Kumar M, and Parameshwaran R, Prod Plan Control29 (2018) 403. https://doi.org/10.1080/09537287.2018.1434253.

    Article  Google Scholar 

  26. Kumar M B, and Parameshwaran R, Int J Manuf Technol Manag33 (2019) 398.

    Article  Google Scholar 

  27. Randive A, Agrawal S, and Kasdekar DK, J Prod Res Manag8 (2019) 24.

  28. Jangra K, Grover S, and Aggarwal A, Front Mech Eng7 (2012) 288.

  29. Goswami A, and Kumar J, Eng Sci Technol Int J17 (2014) 173.

    Article  Google Scholar 

  30. Shi K, Zhang D, and Ren J, Int J Adv Manuf Technol81 (2015) 645.

    Article  Google Scholar 

  31. Meral G, Sarıkaya M, Mia M, Dilipak H, Şeker U, and Gupta MK, Int J Adv Manuf Technol101 (2019) 1595.

    Article  Google Scholar 

  32. Singh J, and Chauhan A, J Mater Res Technol5 (2016) 159. https://doi.org/10.1016/j.jmrt.2015.05.004.

    Article  CAS  Google Scholar 

  33. PalDey S, and Deevi S, Mater Sci Eng A342 (2003) 58.

    Article  Google Scholar 

  34. Baradeswaran A, and Perumal AE, Compos Part B Eng56 (2014) 464.

    Article  CAS  Google Scholar 

  35. Suthar J, and Patel K, Mater Manuf Process33 (2018) 499.

    Article  CAS  Google Scholar 

  36. Kumar G V, Rao C, Selvaraj N, and Bhagyashekar M, J Miner Mater Charact Eng9 (2010) 43.

    Article  Google Scholar 

  37. Kumar S, and Sood PK, Mater Res Expr6 (2019) 056506.

    Article  CAS  Google Scholar 

  38. Sornakumar T, and Kathiresan M, Int J Miner Metall Mater17 (2010) 648.

    Article  CAS  Google Scholar 

  39. Kılıckap E, Cakır O, Aksoy M, and Inan A, J Mater Process Technol164 (2005) 862.

    Article  Google Scholar 

  40. Ghoreishi R, Roohi A H, and Ghadikolaei A D, Mater Res Expr5 (2018) 086521.

    Article  Google Scholar 

  41. Okokpujie I, Okonkwo U, and Okwudibe C, Int J Sci Res4 (2015) 2030.

    Google Scholar 

  42. Aslantas K, Ekici E, and Çiçek A, Measurement128 (2018) 419.

    Article  Google Scholar 

  43. Tzeng C-J, Lin Y-H, Yang Y-K, and Jeng M-C, J Mater Process Technol209 (2009) 2753.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bhuvanesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.B., Parameshwaran, R., Deepandurai, K. et al. Influence of Milling Parameters on Surface Roughness of Al–SiC–B4C Composites. Trans Indian Inst Met 73, 1171–1183 (2020). https://doi.org/10.1007/s12666-020-01960-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01960-6

Keywords

Navigation