Skip to main content

Carbon Fiber Reinforced Polymer (CFRP) Composite Materials, Their Characteristic Properties, Industrial Application Areas and Their Machinability

  • Chapter
  • First Online:
Engineering Design Applications III

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 124))

Abstract

Technology-oriented applications are becoming more important in today’s world and the use of technological processes continues to grow rapidly, day by day. Because of the advantages offered by composite materials, there is a great deal of interest in this material group in various industrial applications. Composite materials continue to develop at a great pace in parallel with the developments in metallic, ceramic and polymeric materials. Therefore, composite materials have found wide usage in engineering materials in recent years. In this material group, carbon fiber reinforced polymer (CFRP) composite materials, from the advanced composite material class, are commonly preferred in strategic applications due to their outstanding features such as high load-carrying capacity and low density. In this study, the production, characteristics and industrial usages of CFRP composite materials, milling and drilling operations carried out on them are presented along with current technology-oriented applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby, M.F., Jones, D.R.: Engineering Materials 1: An Introduction to Their Properties and Applications. Elsevier, England (2012)

    Google Scholar 

  2. Mazumdar, S.K.: Composites Manufacturing: Materials, Product, and Process Engineering. CRC press, Taylor & Francis Group (2001)

    Google Scholar 

  3. Askeland, D.R.: The Science and Engineering of Material. Stanley Thornes Ltd., Boston (1996)

    Book  Google Scholar 

  4. Kalpakjian, S., Schmid, S.R.: Manufacturing Engineering and Technology, 4th edn. Prentice Hall (2000)

    Google Scholar 

  5. Koboević, N., Jurjević, M., Koboević, Ž.: Influence of cutting parameters on thrust force, drilling torque and delamination during drilling of carbon fibre reinforced composites. Tehnički Vjesnik 19(2), 391–398 (2012)

    Google Scholar 

  6. Phadnis, V.A., et al.: Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Compos. Part A-Appl. Sci. Manuf. 47, 41–51 (2013)

    Article  Google Scholar 

  7. Karpat, Y., Bahtiyar, O., Deger, B.: Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates. Int. J. Mach. Tools Manuf. 56, 79–93 (2012)

    Article  Google Scholar 

  8. Rusinek, R.: Cutting process of composite materials: an experimental study. Int. J. Non-Linear Mech. 45(4), 458–462 (2010)

    Article  Google Scholar 

  9. Jones, R.M.: Mechanics of Composite Materials, 2nd edn. Taylor & Francis Inc., Philadelphia, USA (1999)

    Google Scholar 

  10. Miracle, D.B., Donaldson, S.L.: Introduction to composites. In: ASM Handbook, vol. 21, pp. 3–17 (2001)

    Google Scholar 

  11. Mitchell, B.S.: An introduction to materials engineering and science for chemical and materials engineers. Wiley, USA (2004)

    Google Scholar 

  12. Ashby, M.F., et al.: Engineering materials and processes desk reference. Butterworth-Heinemann, USA (2009)

    Google Scholar 

  13. Öchsner, A., da Silva, L.F.M., Altenbach, H.: Design and analysis of materials and engineering structures. Springer, Verlag Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-32295-2

    Article  Google Scholar 

  14. Schwartz, M.: Encyclopedia of Smart Materials Set, 1st edn, p. 2259. Wiley-Interscience (2001)

    Google Scholar 

  15. Berthelot, J.M.: Composite Materials: Mechanical Behavior and Structural Analysis. Springer, New York (1999)

    Book  MATH  Google Scholar 

  16. Schwartz, M.: Composite Materials Handbook. Mcgraw-Hill, London (1992)

    Google Scholar 

  17. Ru-Min, W., Shui-Rong, Z., Zheng, Y.P.: Polymer Matrix Composites and Technology. Woodhead Publishing, Beijing, China (2011)

    Google Scholar 

  18. Gaitonde, V.N., et al.: Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J. Mater. Process. Technol. 203(1–3), 431–438 (2008)

    Article  Google Scholar 

  19. Arul, S., et al.: The effect of vibratory drilling on hole quality in polymeric composites. Int. J. Mach. Tools Manuf. 46(3–4), 252–259 (2006)

    Article  Google Scholar 

  20. Grzesik, W.: Advanced Machining Processes of Metallic Materials: Theory. Modelling and Applications, Elsevier, Oxford, UK (2008)

    Google Scholar 

  21. Staab, G.H.: Laminar Composites. Butterworth-Heinemann, Boston (1999)

    Google Scholar 

  22. Romano, F., Fiori, J., Mercurio, U.: Structural design and test capability of a CFRP aileron. Compos. Struct. 88(3), 333–341 (2009)

    Article  Google Scholar 

  23. Ferreira, J.R., Coppini, N.L., Neto, F.L.: Characteristics of carbon-carbon composite turning. J. Mater. Process. Technol. 109(1–2), 65–71 (2001)

    Article  Google Scholar 

  24. Buckley, J.D., Edie, D.D.: Carbon-Carbon Materials and Composites. Noyes Publications, New Jersey (1993)

    Google Scholar 

  25. Morgan, P.: Carbon Fibers and Their Composites. CRC Press, Boca Raton, FL, USA (2005)

    Book  Google Scholar 

  26. Philippe, S., Figueiredo, J.L.: Carbon Materials for Catalysis. Wiley, Hoboken, NJ (2009)

    Google Scholar 

  27. Chawla, K.K.: Composite Materials: Science and Engineering. Springer Science & Business Media, New York (2012)

    Book  Google Scholar 

  28. Asthana, R., Kumar, A., Dahotre, N.B.: Materials Processing and Manufacturing Science. Science & Technology Books. Elsevier, Boston, MA (2005)

    Google Scholar 

  29. Fitzer, E.: Carbon fibres-present state and future expectations. In: Carbon Fibers Filaments and Composites. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6847-0_1

    Chapter  Google Scholar 

  30. Kalpakjian, S., Schmid, S.: Manufacturing, Engineering and Technology SI, 6th edn. Digital Designs (2006)

    Google Scholar 

  31. Figueiredo, J.L., et al.: Carbon Fibers Filaments and Composites. Nato Asi, Portugal (1989)

    Google Scholar 

  32. Pecat, O., Rentsch, R., Brinksmeier, E.: Influence of milling process parameters on the surface integrity of CFRP. In: Fifth CIRP Conference on High Performance Cutting, vol. 1, pp. 466–470 (2012)

    Article  Google Scholar 

  33. Tagliaferri, V., Diilio, A., Visconti, I.C.: Laser cutting of fiber-reinforced Polyesters. Composites 16(4), 317–325 (1985)

    Article  Google Scholar 

  34. Haynes, W.M.: CRC Handbook of Chemistry and Physics, 95th edn. CRC Press, LCC, Boca Raton (2012)

    Google Scholar 

  35. Mallick, P.K.: Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd edn. Taylor & Francis, CRC Press, Boca Raton (2008)

    Google Scholar 

  36. William, D., Callister, J., Rethwisch, D.G.: Materials Science and Engineering: An Introduction, 8th edn. Wiley, New York (2009)

    Google Scholar 

  37. Shyha, I.S., et al.: Drill geometry and operating effects when cutting small diameter holes in CFRP. Int. J. Mach. Tools Manuf 49(12–13), 1008–1014 (2009)

    Article  Google Scholar 

  38. Wang, Y.G., et al.: Cutting performance of carbon fiber reinforced plastics using PCD tool. Adv. Mater. Res. 215, 14–18 (2011)

    Article  Google Scholar 

  39. Chao, P.Y., Hwang, Y.D.: An improved Taguchi’s method in design of experiments for milling CFRP composite. Int. J. Prod. Res. 35(1), 51–66 (1997)

    Article  MATH  Google Scholar 

  40. Hult, J., Rammerstorfer, F.G.: Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures. Springer (1994)

    Google Scholar 

  41. Zemann, R., Kain, L., Bleicher, F.: Vibration assisted machining of carbon fibre reinforced polymers. In: 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, vol. 69, pp. 536–543 (2014)

    Article  Google Scholar 

  42. Teti, R.: Machining of composite materials. CIRP Ann. Manuf. Technol. 51(2), 611–634 (2002)

    Article  Google Scholar 

  43. Soutis, C.: Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 412(1–2), 171–176 (2005)

    Article  Google Scholar 

  44. Hull, D., Clyne, T.W.: An Introduction to Composite Materials. Cambridge, UK (1996)

    Google Scholar 

  45. Karnik, S.R., et al.: Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater. Des. 29(9), 1768–1776 (2008)

    Article  Google Scholar 

  46. Żółkiewski, S.: Selection and impact of parameters in composite materials designing. In: 13th World Congress in Mechanism and Machine Science, Guanajuato, México (2011)

    Google Scholar 

  47. Groover, M.P.: Fundamentals of Modern Manufacturing: Materials Processes, and Systems. Wiley, New York (2007)

    Google Scholar 

  48. Chung, D.D.L.: Carbon Fiber Composites. Butterworth-Heinemann, Washington (1994)

    Book  Google Scholar 

  49. Burchell, T.D.: Carbon Materials for Advanced Technologies. Elsevier, Pergamon (1999)

    Google Scholar 

  50. Takahashi, K., et al.: Heat conduction analysis of laser CFRP processing with IR and UV laser light. Compos. Part A-Appl. Sci. Manuf. 84, 114–122 (2016)

    Article  Google Scholar 

  51. Suresha, B., et al.: Friction and dry sliding wear behavior of carbon and glass fabric reinforced vinyl ester composites. Tribol. Int. 43(3), 602–609 (2010)

    Article  Google Scholar 

  52. Liu, D.F., Tang, Y.J., Cong, W.L.: A review of mechanical drilling for composite laminates. Compos. Struct. 94(4), 1265–1279 (2012)

    Article  Google Scholar 

  53. Wang, X.M., Zhang, L.C.: An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int. J. Mach. Tools Manuf. 43(10), 1015–1022 (2003)

    Article  Google Scholar 

  54. Islam, F., Ramkumar, J., Milani, A.S.: A simplified damage prediction framework for milling of unidirectional carbon fiber-reinforced plastics. Adv. Manuf.-Polym. Compos. Sci. 1(4), 175–184 (2015)

    Google Scholar 

  55. Handbook-Airframe, A.M.: Aviation Maintenance Technician Handbook. FAA:1 Oklahoma City, USA. www.faa.gov

  56. Hou, J.P., Ruiz, C.: Measurement of the properties of woven CFRP T300/914 at different strain rates. Compos. Sci. Technol. 60(15), 2829–2834 (2000)

    Article  Google Scholar 

  57. Elmarakbi, A.: Advanced composite materials for automotive applications: Structural integrity and crashworthiness. John Wiley & Sons, UK (2013)

    Book  Google Scholar 

  58. Hancox, N.L.: Carbon-fiber reinforced bismaleimide and polystyryl pyridine laminates. Plast. Rubber Process. Appl. 10(3), 131–136 (1988)

    Google Scholar 

  59. Rawat, S., Attia, H.: Wear mechanisms and tool life management of WC-Co drills during dry high speed drilling of woven carbon fibre composites. Wear 267(5–8), 1022–1030 (2009)

    Article  Google Scholar 

  60. Guu, Y.H., et al.: Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites. J. Mater. Sci. 36(8), 2037–2043 (2001)

    Article  Google Scholar 

  61. Iliescu, D., et al.: Modeling and tool wear in drilling of CFRP. Int. J. Mach. Tools Manuf. 50(2), 204–213 (2010)

    Article  Google Scholar 

  62. Davim, J.P., Reis, P.: Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J. Mater. Process. Technol. 160(2), 160–167 (2005)

    Article  Google Scholar 

  63. Brinksmeier, E., Janssen, R.: Drilling of multi-layer composite materials consisting of carbon fiber reinforced plastics (CFRP), titanium and aluminum alloys. CIRP Ann. Manuf. Technol. 51(1), 87–90 (2002)

    Article  Google Scholar 

  64. Zhang, L., Lijiang, W., Xin, W.: Study on vibration drilling of fiber reinforced plastics with hybrid variation parameters method. Compos. A Appl. Sci. Manuf. 34(3), 237–244 (2003)

    Article  Google Scholar 

  65. Durão, L.M.P., et al.: Drilling tool geometry evaluation for reinforced composite laminates. Compos. Struct. 92(7), 1545–1550 (2010)

    Article  Google Scholar 

  66. Chung, D.D.: Composite Materials: Science and Applications. Science & Business Media, 358, Springer, USA (2010)

    Google Scholar 

  67. Nor Khairusshima, M.K., et al.: Tool wear and surface roughness on milling carbon fiber-reinforced plastic using chilled air. J. Asian Sci. Res. 2(11), 593 (2011)

    Google Scholar 

  68. Denkena, B., Boehnke, Dege J.H.: Helical milling of CFRP–titanium layer compounds. CIRP J. Manufact. Sci. Technol. 1(2), 64–69 (2008)

    Article  Google Scholar 

  69. Isbilir, O., Ghassemieh, E.: Delamination and wear in drilling of carbon-fiber reinforced plastic composites using multilayer TiAlN/TiN PVD-coated tungsten carbide tools. J. Reinf. Plast. Compos. 31(10), 717–727 (2012)

    Article  Google Scholar 

  70. Senthilkumar, M., Prabukarthi, A., Krishnaraj, V.: Study on tool wear and chip formation during drilling carbon fiber reinforced polymer (CFRP)/titanium alloy (Ti6Al4V) stacks. Procedia Eng. 64, 582–592 (2013)

    Article  Google Scholar 

  71. Davim, J.P., Reis, P.: Drilling carbon fiber reinforced plastics manufactured by autoclave—experimental and statistical study. Mater. Des. 24(5), 315–324 (2003)

    Article  Google Scholar 

  72. Sanda, A., et al.: Ultrasonically assisted drilling of carbon fibre reinforced plastics and Ti6Al4V. J. Manuf. Processes 22, 169–176 (2016)

    Article  Google Scholar 

  73. Slamani, M., Gauthier, S., Chatelain, J.F.: A study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPs. Measurement 59, 268–283 (2015)

    Article  Google Scholar 

  74. Smith, W.F.: Principles of Materials Science and Engineering. Mcgraw-Hill, New York (1990)

    Google Scholar 

  75. Roberts, T.: Rapid growth forecast for carbon fibre market. Reinf. Plast. 51(2), 10–13 (2007)

    Article  Google Scholar 

  76. Mike, T.: Composites challenge cutting tools. Manuf. Eng. 138(4) (2007)

    Google Scholar 

  77. Gay, D., Hoa, S.V., Tsai, S.W.: Composite Materials, Design and Applications. CRC Press (2003)

    Google Scholar 

  78. Konneh, M., et al.: Surface roughness study of milled carbon fiber Reinforced polymer (CFRP) composite using 4 mm 2-flute titanium aluminum nitride (TiAlN) coated carbide end Mills. Adv. Mater. Res. 887, 1101–1106 (2014)

    Article  Google Scholar 

  79. Yashiro, T., Ogawa, T., Sasahara, H.: Temperature measurement of cutting tool and machined surface layer in milling of CFRP. Int. J. Mach. Tools Manuf. 70, 63–69 (2013)

    Article  Google Scholar 

  80. Sheikh-Ahmad, J.Y.: Machining of Polymer Composites. Springer, New York (2009)

    Book  Google Scholar 

  81. Tandon, S., et al.: Investigations into machining of composites. Precision Eng. 12(4), 227–238 (1990)

    Article  Google Scholar 

  82. Jackson, P.: Airbus A380, fixed-wing civil. In: Jane’s All the World’s Aircraft, pp. 241–246 (2005)

    Google Scholar 

  83. Kolesnikov, B., Herbeck, L., Fink, A.: CFRP/titanium hybrid material for improving composite bolted joints. Compos. Struct. 83(4), 368–380 (2008)

    Article  Google Scholar 

  84. Lee, C.K.: Structure, electrochemical and wear-corrosion properties of electroless nickel-phosphorus deposition on CFRP composites. Mater. Chem. Phys. 114(1), 125–133 (2009)

    Article  Google Scholar 

  85. Slamani, M., Dagger, J.F., Hamedanianpour, H.: Comparison of two models for predicting tool wear and cutting force components during high speed trimming of CFRP. Int. J. Mater. Form. 8(2), 305–316 (2015)

    Article  Google Scholar 

  86. URL-1 https://www.tai.com.tr/tr/proje/anka. TAI [cited 21 August 2016]

  87. Davim, J.P.: Machining Composites Materials. ISTE, London (2010)

    Google Scholar 

  88. Marques, A.T., et al.: Delamination analysis of carbon fibre reinforced laminates: Evaluation of a special step drill. Compos. Sci. Technol. 69(14), 2376–2382 (2009)

    Article  Google Scholar 

  89. Savage, G.: Composite materials in formula 1 racing. Met. Mater. 7(10), 617–624 (1991)

    Google Scholar 

  90. Tamin, M.N.: Damage and fracture of composite materials and structures. Springer, Heidelberg, Germany (2012)

    Book  Google Scholar 

  91. Dold, C., et al.: Comparison of ground and laser machined polycrystalline diamond (PCD) tools in cutting carbon fiber reinforced plastics (CFRP) for aircraft structures. In: Fifth CIRP Conference on High Performance Cutting, vol. 1, pp. 178–183 (2012)

    Article  Google Scholar 

  92. Mucha, P., et al.: Momentum and velocity of the ablated material in laser machining of carbon fiber preforms. Appl. Phys. A-Mater. Sci. Process. 113(2), 361–366 (2013)

    Article  Google Scholar 

  93. Klotz, S., Zanger, F., Schulze, V.: Influence of clamping systems during milling of carbon fiber reinforced composites. Procedia CIRP 24, 38–43 (2014)

    Article  Google Scholar 

  94. Brooke, L.: Carbon fiber, new aluminum structure lighten 2014 Corvette Stingray. Automot. Eng. Int. 121, 1 (2013)

    Google Scholar 

  95. Jacob, A.: BMW counts on carbon fibre for its megacity vehicle. Reinf. Plast. 54(5), 38–41 (2010)

    Article  Google Scholar 

  96. Stewart, R.: Carbon fibre producers optimistic in downturn. Reinf. Plast. 54(1), 18–24 (2010)

    Article  Google Scholar 

  97. Rosato, D.V.: Plastics end use applications. Springer Science & Business Media, USA (2011)

    Book  Google Scholar 

  98. Kalla, D., Sheikh-Ahmad, J., Twomey, J.: Prediction of cutting forces in helical end milling fiber reinforced polymers. Int. J. Mach. Tools Manuf. 50(10), 882–891 (2010)

    Article  Google Scholar 

  99. Jahanmir, S., Ramulu, M., Koshy, P.: Machining of Ceramics and Composites. Marcel Dekker (1999)

    Google Scholar 

  100. Komanduri, R.: Machining of fiber-reinforced composites. Machining Science and Technology 1(1), 113–152 (1997)

    Article  Google Scholar 

  101. Makhdum, F., et al.: Cutting forces in ultrasonically assisted drilling of carbon fibre-reinforced plastics. J. Phys.: Conf. Ser. 382(1), 012019 (2012)

    Google Scholar 

  102. Hocheng, H., Puw, H.Y., Huang, Y.: Preliminary study on milling of unidirectional carbon fibre-reinforced plastics. Compos. Manuf. 4(2), 103–108 (1993)

    Article  Google Scholar 

  103. Klinkova, O., et al.: Characterization of friction properties at the work material/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribol. Int. 44(12), 2050–2058 (2011)

    Article  Google Scholar 

  104. Shetty, N., et al.: Soft computing techniques during drilling of bi-directional carbon fiber reinforced composite. Appl. Soft Comput. 41, 466–478 (2016)

    Article  Google Scholar 

  105. Santiuste, C., et al.: Modelling thermal effects in machining of carbon fiber reinforced polymer composites. J. Reinf. Plast. Compos. 33(8), 758–766 (2014)

    Article  Google Scholar 

  106. Hejjaji, A., et al.: Machining damage in frps: Laser versus conventional drilling. Compos. Part A-Appl. Sci. Manuf. 82, 42–52 (2016)

    Article  Google Scholar 

  107. Nurhaniza, M., et al.: Analyzing the effect of machining parameters setting to the surface roughness during end milling of CFRP-Aluminium composite laminates. Int. J. Manuf. Eng. 2016, 1–9 (2016)

    Google Scholar 

  108. Che, D.M., et al.: Machining of carbon fiber reinforced plastics/polymers: a literature review. J. Manuf. Sci. Eng.-Trans. ASME 136(3), 034001 (2014)

    Article  Google Scholar 

  109. Ozkan, D., et al.: Milling behavior analysis of carbon fiber-reinforced polymer (CFRP) composites. Mater. Today: Proc. 11, 526–533 (2019)

    Google Scholar 

  110. Kim, K.S., et al.: Machinability of carbon-fiber epoxy composite-materials in turning. J. Mater. Process. Technol. 32(3), 553–570 (1992)

    Article  MathSciNet  Google Scholar 

  111. Karpat, Y., Polat, N.: Mechanistic force modeling for milling of carbon fiber reinforced polymers with double helix tools. CIRP Ann. Manuf. Technol. 62(1), 95–98 (2013)

    Article  Google Scholar 

  112. Tsao, C.C., Hocheng, H.: Analysis of delamination in drilling composite materials by core-saw drill. Int. J. Mater. Prod. Technol. 32(2–3), 188–201 (2008)

    Article  Google Scholar 

  113. Bhatnacar, N., et al.: On the machining of fiber reinforced plastic (FRP) composite laminates. Int. J. Mach. Tools Manuf. 35, 701–716 (1995)

    Article  Google Scholar 

  114. Davim, J.P., Reis, P.: Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos. Struct. 59(4), 481–487 (2003)

    Article  Google Scholar 

  115. Krishnamoorthy, A., Boopathy, S.R., Palanikumar, K.: Delamination prediction in drilling of CFRP composites using artificial neural network. J. Eng. Sci. Technol. 6(2), 191–203 (2011)

    Google Scholar 

  116. Gordon, S., Hillery, M.T.: A review of the cutting of composite materials. Proc. Inst. Mech. Eng. Part L-J. Mater.-Des. Appl. 217(L1), 35–45 (2003)

    Google Scholar 

  117. Koenig, W., et al.: Machining of fibre reinforced plastics. CIRP Ann. Manuf. Technol. 34(2), 537–548 (1985)

    Article  Google Scholar 

  118. Haddad, M., et al.: Study of the surface defects and dust generated during trimming of CFRP: influence of tool geometry, machining parameters and cutting speed range. Compos. Part A-Appl. Sci. Manuf. 66, 142–154 (2014)

    Article  Google Scholar 

  119. Wang, X., et al.: Tool wear of coated drills in drilling CFRP. J. Manuf. Process. 15(1), 127–135 (2013)

    Article  Google Scholar 

  120. Lin, S.C., Chen, I.K.: Drilling carbon fiber-reinforced composite material at high speed. Wear 194(1–2), 156–162 (1996)

    Google Scholar 

  121. Mišković, A., Koboević, N.: The effect of cutting tool geometry on thrust FORCE and delamination when drilling carbon fibre reinforced composite materials. In Proceedings of the 15th International Research/Expert Conference on Trends in the Development of Machinery and Associated Technology, pp. 769–772, Prague (2011)

    Google Scholar 

  122. Abrao, A.M., et al.: Drilling of fiber reinforced plastics: a review. J. Mater. Process. Technol. 186(1–3), 1–7 (2007)

    Article  Google Scholar 

  123. Jia, Z.Y., et al.: Temperature effects in end milling carbon fiber reinforced polymer composites. Polym. Compos. 39(2), 437–447 (2018)

    Article  Google Scholar 

  124. Morkavuk, S., et al.: Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: a comparative study. Compos. Part B-Eng. 147, 1–11 (2018)

    Article  Google Scholar 

  125. Çelik, Y.H., Kilickap, E., Kilickap, A.I.: An experimental study on milling of natural fiber (jute)-reinforced polymer composites. J. Compos. Mater. 53(22), 3127–3137 (2019)

    Article  Google Scholar 

  126. Hintze, W., Hartmann, D., Schütte, C.: Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs)—an experimental study. Compos. Sci. Technol. 71(15), 1719–1726 (2011)

    Article  Google Scholar 

  127. Vaibhav, A.P., et al.: Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Compos. A Appl. Sci. Manuf. 47, 41–51 (2013)

    Article  Google Scholar 

  128. Zitoune, R., et al.: Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos. Part B-Eng. 43(3), 1480–1488 (2012)

    Article  Google Scholar 

  129. Ozkan, D., et al.: The effect of cutting parameters on tool wear during the milling of carbon fiber reinforced polymer (CFRP) composites. Mater. Sci. 25(1), 42–46 (2019)

    Google Scholar 

  130. Sui, J.B., Wang, C.Y.: Machinability study of unidirectional CFRP laminates by slot milling. Int. J. Adv. Manuf. Technol. 100(1–4), 189–197 (2019)

    Article  Google Scholar 

  131. Sundi, S., et al.: Influence of router tool Geometry on surface finish in edge trimming of multi-directional CFRP material. IOP Conf. Ser.: Mater. Sci. Eng. 469(1), 012026 (2019)

    Article  Google Scholar 

  132. Gong, Y.H., et al.: Surface morphology in milling multidirectional carbon fiber reinforced polymer laminates. Adv. Mater. Res. 683, 158–162 (2013)

    Article  Google Scholar 

  133. Haddad, M., et al.: Study of trimming damages of CFRP structures in function of the machining processes and their impact on the mechanical behavior. Compos. B Eng. 57, 136–143 (2014)

    Article  Google Scholar 

  134. Klocke, F., Würtz, C.: The use of PCD tools for machining fibre reinforced materials (polycrystalline diamond). In: ECCM-8, pp. 509–515 (1998)

    Google Scholar 

  135. Li, H., et al.: Machining quality and cutting force signal analysis in UD-CFRP milling under different fiber orientation. Int. J. Adv. Manuf. Technol. 98(9–12), 2377–2387 (2018)

    Article  Google Scholar 

  136. Qin, X.D., et al.: Delamination analysis of the helical milling of carbon fiber-reinforced plastics by using the artificial neural network model. J. Mech. Sci. Technol. 28(2), 713–719 (2014)

    Article  Google Scholar 

  137. Brinksmeier, E., Fangmann, S.: Orbital drilling of high tolerance boreholes. In: International Conference on Applied Production Technology (APT ‘07), pp. 75–84. BIAS-Verlag (2007)

    Google Scholar 

  138. Tönshoff, H., et al.: Machining of holes developments in drilling technology. CIRP Ann. Manuf. Technol. 43(2), 551–561 (1994)

    Article  Google Scholar 

  139. Ni, W.: Orbital drilling of aerospace materials. SAE Technical Paper (2007). https://doi.org/10.4271/2007-01-3814

    Article  Google Scholar 

  140. Wang, H., et al.: Prediction of cutting forces in helical milling process. Int. J. Adv. Manuf. Technol. 58(9), 849–859 (2012)

    Article  Google Scholar 

  141. Hocheng, H., Puw, H.: On drilling characteristics of fiber-reinforced thermoset and thermoplastics. Int. J. Mach. Tools Manuf. 32(4), 583–592 (1992)

    Article  Google Scholar 

  142. Won, M.S., Dharan, C.K.H.: Chisel edge and pilot hole effects in drilling composite laminates. J. Manuf. Sci. Eng. 124(2), 242–247 (2002)

    Article  Google Scholar 

  143. Chen, W.C.: Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. Int. J. Mach. Tools Manuf. 37(8), 1097–1108 (1997)

    Article  Google Scholar 

  144. Zhang, L., Wang, L., Liu, X.: A mechanical model for predicting critical thrust forces in drilling composite laminates. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 215(2), 135–146 (2001)

    Article  Google Scholar 

  145. Subramanian, K., Cook, N.H.: Sensing of drill wear and prediction of drill life. J. Eng. Ind. 99(2), 295–301 (1977)

    Article  Google Scholar 

  146. Muller-Hummel, P., Richter, J., Moller, B.: Neue Werkstoffe fordern neue Allianzen. WB: Werkstatt und Betrieb 141(10), 66 (2008)

    Google Scholar 

  147. Faraz, A., Biermann, D., Weinert, K.: Cutting edge rounding: an innovative tool wear criterion in drilling CFRP composite laminates. Int. J. Mach. Tools Manuf. 49(15), 1185–1196 (2009)

    Article  Google Scholar 

  148. Miller, J.: Drilling graphite/epoxy at lockheed. Am. Mach. Autom. Manuf., 70–71 (1987)

    Google Scholar 

  149. Marx, W., Trink, S.: Manufacturing methods for cutting, machining and drilling composite materials. Technical Report No. AD-B034202. DoD, USA (1978)

    Google Scholar 

  150. Haiyan, W., et al.: Analysis of cutting forces in helical milling of carbon fiber–reinforced plastics. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 227(1), 62–74 (2012)

    Article  Google Scholar 

  151. Ismail, S., et al.: Recent advances in twist drill design for composites machining: a critical review. Proc. Inst. Mech. Eng.-Part B-J. Eng. Manuf. 231(14), 2527–2542 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dervis Ozkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozkan, D., Gok, M.S., Karaoglanli, A.C. (2020). Carbon Fiber Reinforced Polymer (CFRP) Composite Materials, Their Characteristic Properties, Industrial Application Areas and Their Machinability. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications III. Advanced Structured Materials, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-030-39062-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39062-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39061-7

  • Online ISBN: 978-3-030-39062-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics