Skip to main content
Log in

Machining behavior investigation of aluminium metal matrix composite reinforced with TiC particulates

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the impact of input factors, namely spindle speed (Ss), feed rate (Fr), and depth of cut (DOC), on the output response of surface roughness (Ra) and metal removal rate (MRR) during the dry turning process of AA-6061. The material under study, AA-6061, is strengthened with 6% and 8% weight of titanium carbide (TiC) particles, having an average particle size (APS) of 2 microns. To create experimental designs, the Box-Behnken design (BBD) of response surface methodology (RSM) and mathematical models were used. The desirability-function approach of RSM was applied to obtain optimal input factor values. The findings showed that, for 6% TiC composites, Ss had the greatest effect on both Ra and MRR, followed by Fr and DOC. Similarly, for 8% TiC composites, Ss had the most impact on Ra, followed by DOC and Fr, while DOC had the greatest influence on MRR. To validate the accuracy of the proposed models, confirmation tests were conducted. The outcomes of the confirmation test show that the proposed models are valid. The outcome of the study can be applied in manufacturing industries for optimizing machining processes, resulting in increased efficiency and reduced production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chawla, N., Chawla, K.K.: Metal matrix composites. Met. Matrix Compos. 9781461495482, 1–370 (2013). https://doi.org/10.1007/978-1-4614-9548-2/COVER

    Article  Google Scholar 

  2. Dinbandhu, Thakur, A., Venugopal Goud, E., Abhishek, K., Vora, J.J.: An overview of Proteus: the world’s first man-made non-cuttable material. Recent advances in smart manufacturing and materials: select proceedings of ICEM 2020, pp. 95–102. Springer, Heidelberg (2021) https://doi.org/10.1007/978-981-16-3033-0_9

  3. Agarwal, K.M., Tyagi, R.K., Saxena, V., Choubey, K.K.: Mechanical behaviour of aluminium alloy AA6063 processed through ECAP with optimum die design parameters. Adv. Mater. Process. Technol. 9, 1901–1915 (2021). https://doi.org/10.1080/2374068X.2021.1878705

    Article  Google Scholar 

  4. Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana Acad. Proc. Eng. Sci. 28, 319–334 (2003). https://doi.org/10.1007/BF02717141

    Article  Google Scholar 

  5. Bandhu, D., Thakur, A., Purohit, R., Verma, R.K., Abhishek, K.: Characterization & evaluation of Al7075 MMCs reinforced with ceramic particulates and influence of age hardening on their tensile behavior. J. Mech. Sci. Technol. 32, 3123–3128 (2018). https://doi.org/10.1007/s12206-018-0615-9

    Article  Google Scholar 

  6. Thakur, A., Purohit, R., Rana, R.S., Bandhu, D.: Characterization and evaluation of mechanical behavior of epoxy-CNT-bamboo matrix hybrid composites. Mater. Today Proc. 5(2), 3971–3980 (2018). https://doi.org/10.1016/j.matpr.2017.11.655

    Article  Google Scholar 

  7. Agarwal, K.M., Tyagi, R.K., Saxena, K.K.: Deformation analysis of Al Alloy AA2024 through equal channel angular pressing for aircraft structures. Adv. Mater. Process Technol. 8, 828–842 (2020). https://doi.org/10.1080/2374068X.2020.1834756

    Article  Google Scholar 

  8. Murali Mohan, M., Venugopal Goud, E., Deva Kumar, M.L.S., Kumar, V., Dinbandhu, Kumar, M.: Parametric optimization and evaluation of machining performance for aluminium-based hybrid composite using utility-Taguchi approach. Recent advances in smart manufacturing and materials: select proceedings of ICEM 2020, pp. 289–300. Springer, Heidelberg (2021) https://doi.org/10.1007/978-981-16-3033-0_27

  9. Nicholls, C.J., Boswell, B., Davies, I.J., Islam, M.N.: Review of machining metal matrix composites. Int. J. Adv. Manuf. Technol. 90, 2429–2441 (2017). https://doi.org/10.1007/s00170-016-9558-4

    Article  Google Scholar 

  10. Laghari, R.A., Li, J., Laghari, A.A., Qi Wang, S.: A review on application of soft computing techniques in machining of particle reinforcement metal matrix composites. Arch. Comput. Methods Eng. 27, 1363–1377 (2020). https://doi.org/10.1007/s11831-019-09340-0

    Article  Google Scholar 

  11. Salem, H.G., El-Eskandarany, S., Kandil, A., Abdul Fattah, H.: Bulk behavior of ball milled AA2124 nanostructured powders reinforced with TiC. J. Nanomater. (2009). https://doi.org/10.1155/2009/479185

    Article  Google Scholar 

  12. Upadhyay, S., Saxena, K.K.: Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: an overview. Mater. Today Proc. 26, 2462–2470 (2020). https://doi.org/10.1016/J.MATPR.2020.02.524

    Article  Google Scholar 

  13. Singh, B., Singhal, P., Saxena, K.K.: Effect of transverse speed on mechanical and microstructural properties of friction stir welded aluminium AA2024-T351. Adv. Mater. Process Technol. 6, 519–529 (2020). https://doi.org/10.1080/2374068X.2020.1728642

    Article  Google Scholar 

  14. Nandhakumar, S., Vijayakumar, R., Padmavathy, S., Nagasundaram, N.: Optimization of cutting parameters during turning of AISI-310 using response surface methodology. Appl. Mech. Mater. 854, 45–51 (2016). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.854.45

    Article  Google Scholar 

  15. Saxena, K.K., Chetan, K., Vaibhav, K., Mani Krishna, K.V., Pancholi, V., Jha, S.K., Srivastava, D.: Constitutive analysis of Zr-1Nb alloy for different phase regions. Mater. Perform. Charact. 8, 821–832 (2019). https://doi.org/10.1520/MPC20190020

    Article  Google Scholar 

  16. Bandhu, D., Mohan, M.M., Yadav, G.P.K., Reddy, K.J., Shavali, G.S.: Mechanical properties of Makhana (Euryale Ferox Salisbury) reinforced composite. Int. J. Sci. Res. Dev. 4, 447–449 (2016)

    Google Scholar 

  17. Siddappa, P.N., Shivakumar, B.P., Yogesha, K.B., Mruthunjaya, M., Hanamantraygouda, M.B.: Machinability study of Al-TiC metal matrix composite. MATEC Web Conf. 144, 03001 (2018). https://doi.org/10.1051/MATECCONF/201814403001

    Article  Google Scholar 

  18. Jha, P., Shaikshavali, G., Shankar, M.G., Ram, M.D.S., Bandhu, D., Saxena, K.K., Buddhi, D., Agrawal, M.K.: A hybrid ensemble learning model for evaluating the surface roughness of AZ91 alloy during the end milling operation. Surf. Rev. Lett. (2022). https://doi.org/10.1142/S0218625X23400012

    Article  Google Scholar 

  19. Dinbandhu, Abhishek, K., Thakur, A., Nagaphani Sastry, M., Devaki Devi, K., Nishant, A.: A study on mechanical attributes of epoxy-carbon fiber-Terminalia bellirica embedded hybrid composites. Recent advances in smart manufacturing and materials: select proceedings of ICEM 2020, pp. 163–173. Springer, Heidelberg (2021) https://doi.org/10.1007/978-981-16-3033-0_15.

  20. Kishore, D.S.C., Rao, K.P., Mahamani, A.: Investigation of cutting force, surface roughness and flank wear in turning of in-situ Al6061-TiC metal matrix composite. Procedia Mater. Sci. 6, 1040–1050 (2014). https://doi.org/10.1016/J.MSPRO.2014.07.175

    Article  Google Scholar 

  21. Kim, J., Bai, W., Roy, A., Jones, L.C.R., Ayvar-Soberanis, S., Silberschmidt, V.V.: Hybrid machining of metal-matrix composite. Procedia CIRP 82, 184–189 (2019). https://doi.org/10.1016/j.procir.2019.04.162

    Article  Google Scholar 

  22. Tripathi, D.R., Vachhani, K.H., Bandhu, D., Kumari, S., Kumar, V.R., Abhishek, K.: Experimental investigation and optimization of abrasive waterjet machining parameters for GFRP composites using metaphor-less algorithms. Mater. Manuf. Process. 36, 803–813 (2021). https://doi.org/10.1080/10426914.2020.1866193

    Article  Google Scholar 

  23. Sivasankaran, S., Sivasankaran, S.: Influence of TiC addition on the surface roughness during turning of AA 7075 alloy processed through stir-casting. AIMS Mater. Sci. 5, 699–710 (2018). https://doi.org/10.3934/MATERSCI.2018.4.699

    Article  Google Scholar 

  24. Zadafiya, K., Bandhu, D., Kumari, S., Chatterjee, S., Abhishek, K.: Recent trends in drilling of carbon fiber reinforced polymers (CFRPs): a state-of-the-art review. J. Manuf. Process. 69, 47–68 (2021). https://doi.org/10.1016/j.jmapro.2021.07.029

    Article  Google Scholar 

  25. Shavali, G.S., Venugopal Goud, E., Yadav, G.P.K., Bandhu, D.: Tensile and flexural characterization of Nomex and E-glass fibre reinforced epoxy composites. Int. J. Sci. Res. Dev. 4, 981–983 (2016)

    Google Scholar 

  26. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A.: Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977 (2008). https://doi.org/10.1016/J.TALANTA.2008.05.019

    Article  Google Scholar 

  27. Dey, A., Pandey, K.M.: Selection of optimal processing condition during WEDM of compocasted AA6061/cenosphere AMCs based on grey-based hybrid approach. Mater. Manuf. Process. 33, 1549–1558 (2018). https://doi.org/10.1080/10426914.2018.1453154

    Article  Google Scholar 

  28. Ramnath, B.V., Elanchezhian, C., Annamalai, R.M., Aravind, S., Sri, T., Atreya, A., Vignesh, V., Subramanian, C.: Aluminium metal matrix composites—a review. Rev. Adv. Mater. Sci. 38(5), 55–60 (2013)

    Google Scholar 

  29. Anwar, K., Said, M., Afizal, M., Amin, M.: Overview on the response surface methodology (RSM) in extraction processes. https://publisher.unimas.my/ojs-training/index.php/JASPE/article/view/161 (2015). Accessed 1 Feb 2023

  30. Bandhu, D., Kumari, S., Prajapati, V., Saxena, K.K., Abhishek, K.: Experimental investigation and optimization of RMD™ welding parameters for ASTM A387 grade 11 steel. Mater. Manuf. Process. 36, 1524–1534 (2021). https://doi.org/10.1080/10426914.2020.1854472

    Article  Google Scholar 

  31. Panneerselvam, K., Lenin, K.: Parameters optimization in FSW of polypropylene based on RSM, Multidiscip Model. Mater. Struct. 11, 32–42 (2015). https://doi.org/10.1108/MMMS-07-2013-0048/FULL/XML

    Article  Google Scholar 

  32. Kumari, S., Bandhu, D., Muchhadiya, A., Abhishek, K.: Recent trends in parametric influence and microstructural analysis of friction stir welding for polymer composites. Adv. Mater. Process. Technol. (2023). https://doi.org/10.1080/2374068X.2023.2193447

    Article  Google Scholar 

  33. Yıldız, A., Uğur, L., Parlak, İE.: Optimization of the cutting parameters affecting the turning of AISI 52100 bearing steel using the Box-Behnken experimental design method. Appl. Sci. 13, 3 (2023). https://doi.org/10.3390/app13010003

    Article  Google Scholar 

  34. Mazahery, A., Shabani, M.O.: Study on microstructure and abrasive wear behavior of sintered Al matrix composites. Ceram. Int. 38, 4263–4269 (2012). https://doi.org/10.1016/J.CERAMINT.2012.02.008

    Article  Google Scholar 

  35. Bandhu, D., Kumar, R., Nishant, A., Thakur, A.: Characterization of friction stir welding for AA 2014–6061 and influence of aging on their mechanical behavior. 5th National Conference Topics Transcend Mechanical Technology SJBIT Bangalore, pp. 98–102. https://www.researchgate.net/publication/317950120 (2017). Accessed 12 May 2022

  36. Suresh, S., Moorthi, N.S.V.: Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities. Procedia Eng. 38, 89–97 (2012). https://doi.org/10.1016/J.PROENG.2012.06.013

    Article  Google Scholar 

  37. Pawar, P.B., Wabale, R.M., Utpat, A.A.: A comprehensive study of aluminum based metal matrix composites: challenges and opportunities. Mater. Today Proc. 5, 23937–23944 (2018). https://doi.org/10.1016/J.MATPR.2018.10.186

    Article  Google Scholar 

  38. Kennedy, A.R., Weston, D.P., Jones, M.I.: Reaction in Al–TiC metal matrix composites. Mater. Sci. Eng. A 316, 32–38 (2001). https://doi.org/10.1016/S0921-5093(01)01228-X

    Article  Google Scholar 

  39. Suraya, S., Shamsuddin, S., Nur Najmiyah, J., Nor Imrah, Y.: Studies on tensile properties of titanium carbide (TiC) particulates composites. Adv. Mater. Res. 903, 151–156 (2014). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.903.151

    Article  Google Scholar 

  40. Ramakoteswararao, V., Ramanaiah, N., Sarcar, M.M.M.: Optimization of volumetric wear rate of AA7075-TiC metal matrix composite by using taguchi technique. Jordan J. Mech. Ind. Eng. 10 (2016)

  41. Patel, Y.R., Suthar, P.J.D.: A review paper on optimization of turning parameters for surface roughness and material removal rate for SS 310. Indian J. Appl. Res. 5, 40–42 (2015)

    Google Scholar 

  42. Bhirud, N.L., Dube, A.S., Patil, A.S., Bhole, K.S.: Multi-objective optimization of cutting parameters and helix angle for temperature rise and surface roughness using response surface methodology and desirability approach for Al 7075. Int. J. Interact. Des. Manuf. 2023, 1–20 (2023). https://doi.org/10.1007/S12008-023-01285-W

    Article  Google Scholar 

  43. Sharma, D., Bhowmick, A., Goyal, A.: Enhancing EDM performance characteristics of Inconel 625 superalloy using response surface methodology and ANFIS integrated approach. CIRP J. Manuf. Sci. Technol. 37, 155–173 (2022). https://doi.org/10.1016/J.CIRPJ.2022.01.005

    Article  Google Scholar 

  44. Okokpujie, I.P., Tartibu, L.K., Okokpujie, K.: Implementation of Box-Behnken design to study the factors interaction impacts and modelling of the surface roughness of AL 6063 alloys during turning operations. Int. J. Interact. Des. Manuf. 2023, 1–11 (2023). https://doi.org/10.1007/S12008-023-01278-9/METRICS

    Article  Google Scholar 

  45. Aruri, D., Kolli, M., Kosaraju, S., Sai Kumar, G.: RSM-TOPSIS multi optimization of EDM factors for rotary stir casting hybrid (Al7075/B4C/Gr) composites. Int. J. Interact. Des. Manuf. 2022, 1–16 (2022). https://doi.org/10.1007/S12008-022-00893-2/METRICS

    Article  Google Scholar 

  46. Sam, M., Radhika, N., Ramu, M., Saleh, B., Pramanik, A.: Optimizing reciprocal wear responses of centrifugally cast A333 hybrid functionally graded composite using Taguchi and response surface methodology. Int. J. Interact. Des. Manuf. 2022, 1–16 (2022). https://doi.org/10.1007/S12008-022-01125-3/METRICS

    Article  Google Scholar 

  47. Frifita, W., Ben Salem, S., Haddad, A., Yallese, M.A.: Optimization of machining parameters in turning of Inconel 718 Nickel-base super alloy. Mech. Ind. 21, 203 (2020). https://doi.org/10.1051/MECA/2020001

    Article  Google Scholar 

  48. Elaiyarasan, U., Vinod, B., Nallathambi, K.: Response surface methodology study on electrical discharge deposition of AZ31B magnesium alloy with powder composite electrode. Int. J. Interact. Des. Manuf. 17, 435–444 (2023). https://doi.org/10.1007/S12008-022-00923-Z/METRICS

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Din Bandhu.

Ethics declarations

Conflict of interest

Neither of the authors has any financial stakes in the research topic being discussed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A.R., Vaidya, A.M., Meshram, P.D. et al. Machining behavior investigation of aluminium metal matrix composite reinforced with TiC particulates. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01378-6

Keywords

Navigation