Skip to main content

Advertisement

Log in

Runout modelling and hazard assessment of Tangni debris flow in Garhwal Himalayas, India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Debris flows are frequently occurring natural processes in geologically complex terrains of the Indian Himalayas. Debris flow runout modelling leading to hazard assessment is essential for planning, designing, and execution of mitigation measures. In the present context, debris flow hazard assessment has been carried out for the Tangni debris flow in Garhwal Himalayas, India. Runout modelling was carried out using a Voellmy model-based 3D numerical simulation for estimation of flow intensity parameters such as runout distance, flow velocity, height and pressure along the propagation path. For calibration of the model inputs, back analysis of Tangni debris flow event that occurred in 2013, with its known runout length and deposition volume as the criteria, has been conducted. The best calibrated values of frictional parameters are obtained at μ = 0.10 and ξ = 400 m/s2. Using the best calibrated values of frictional parameters, hazard assessment was carried out for two potential release areas separately, with different initial volumes, and in combination to derive the probable runout distance along with other flow intensity parameters for different scenarios that may happen in the future. It has been observed that this debris flow scenario including the combination of two potential release areas will block the Alaknanda River, forming a landslide dam with a probable height of 6 m. Debris flow runout modelling-based hazard assessment will be helpful in determining quantitative information on flow intensity parameters, where complete data on past events are generally not available or were not possible to capture for the Indian Himalayan region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anbalagan R (1996) Landslide hazard and risk assessment mapping of mountainous terrains—a case study from Kumaun Himalaya, India. Eng Geol 43:237–246. https://doi.org/10.1016/S0013-7952(96)00033-6

    Article  Google Scholar 

  • Ayotte D, Evans N, Hungr O (1999) Runout analysis of debris flows and avalanches in Hong Kong. In: Proceedings, slope stability and landslides, Vancouver geotechnical society symposium, Vancouver, Canada. http://v-g-s.ca/s/1999-4

  • Bartelt P, Bieler C, Bühler Y, Christen M, Deubelbeiss Y, Graf C, McArdell BW, Salz M, Schneider M (2017) A numerical model for debris flows research and practice User Manual v1.7.0 Debris Flow. ETH Swiss Federal Institute of Technology Zurich, Zurich https://ramms.slf.ch/ramms/downloads/RAMMS_DBF_Manual.pdf

  • Beguería S, Van Asch TW, Malet JP, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9:1897–1909. https://doi.org/10.5194/nhess-9-1897-2009

    Article  Google Scholar 

  • Bisantino T, Fischer P, Gentile F (2010) Rheological characteristics of debris-flow material in South-Gargano watersheds. Nat Hazards 54(2):209–223. https://doi.org/10.1007/s11069-009-9462-4

    Article  Google Scholar 

  • Botha A (2017) Creating an engineering modelling workflow for RAMMS: rockfall, using the input parameter sensitivities. Dissertation, University of Canterbury

  • Brezzi L, Bossi G, Gabrieli F, Marcato G, Pastor M, Cola S (2016) A new data assimilation procedure to develop a debris flow run-out model. Landslides 13:1083–1096. https://doi.org/10.1007/s10346-015-0625-y

    Article  Google Scholar 

  • Bühler Y, Christen M, Kowalski J, Bartelt P (2011) Sensitivity of snow avalanche simulations to digital elevation model quality and resolution. Ann Glaciol 52:72–80. https://doi.org/10.3189/172756411797252121

    Article  Google Scholar 

  • Cannon SH, Savage WZ (1988) A mass-change model for the estimation of debris-flow runout. J Geol 96:221–227. https://doi.org/10.1086/629211

    Article  Google Scholar 

  • Cesca M, D’Agostino V (2008) Comparison between FLO-2D and RAMMS in debris-flow modelling: a case study in the Dolomites. WIT Trans Eng Sci 60:197–206. https://doi.org/10.2495/DEB080201

    Article  Google Scholar 

  • Champati Ray PK, Chattoraj SL, Bisht MPS, Kannaujiya S, Pandey K, Goswami A (2016) Kedarnath disaster 2013: causes and consequences using remote sensing inputs. Nat Hazards 81:227–243. https://doi.org/10.1007/s11069-015-2076-0

    Article  Google Scholar 

  • Chattoraj SL, Champati PK (2015) Simulation and modeling of debris flows using satellite derived data: a case study from Kedarnath Area. Int J Geomatics Geosci 6:1498–1511

    Google Scholar 

  • Chattoraj SL, Pardeshi S, Gupta V, Ketholia Y (2018) 3-Dimensional modeling of 2014-Malin Landslide, Maharashtra using satellite-derived data: a quantitative approach to numerical simulation technique. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2017-382

  • Chattoraj SL, Champati Ray PK, Kannaujiya S (2019) Simulation outputs of major debris flows in Garhwal Himalaya: a geotechnical modeling approach for hazard mitigation. In: Remote sens northwest Himal ecosyst, pp 37–56. https://doi.org/10.1007/978-981-13-2128-3_3

  • Chaturvedi P, Dutt V, Jaiswal B, Tyagi N, Sharma S, Mishra SP, Dhar S, Joglekar P (2014) Remote sensing based regional landslide risk assessment. Int J Emerg Trends Electr Electron 10:2320–9569

    Google Scholar 

  • Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotech J 37(1):146–160. https://doi.org/10.1139/t99-089

    Article  Google Scholar 

  • Chen H, Lee CF (2004) Geohazards of slope mass movement and its prevention in Hong Kong. Eng Geol 76:3–25. https://doi.org/10.1016/j.enggeo.2004.06.003

    Article  Google Scholar 

  • Chen J, Lee CF (2007) Landslide mobility analysis using Madflow. In: Ho K, Li V (eds) The 2007 international forum on landslide disaster management. ISBN 978-962-7619-30-7

  • Chen HX, Zhang LM, Chang DS, Zhang S (2012) Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China. Nat Hazards 62:1037–1057. https://doi.org/10.1007/s11069-012-0133-5

    Article  Google Scholar 

  • Christen M, Bartelt P, Gruber U (2005) Numerical calculation of snow avalanche runout distances. In: Proc 2005 ASCE Int Conf Comput Civ Eng, pp 927–938. https://doi.org/10.1061/40794(179)88

  • Christen M, Bartelt P, Kowalski J, Stoffel L (2007) Calculation of dense snow avalanches in three-dimensional terrain with the numerical simulation program ramms. Internetional Snow Science Workshop, pp 709–716

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14. https://doi.org/10.1016/j.coldregions.2010.04.005

    Article  Google Scholar 

  • Christen M, Bühler Y, Bartelt P, Leine R, Glover J, Schweizer A, Graf C, McArdell BW, Gerber W, Deubelbeiss Y, Feistl T (2012) Integral hazard management using a unified software environment numerical simulation tool “RAMMS.” In: Conference proceedings 12th Congress Interpraevent, France, pp 77–86

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271. https://doi.org/10.1139/t96-005

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3(6):523–538. https://doi.org/10.5194/nhess-3-523-2003

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Chapter 3 landslide types and processes. Landslides investig mitigation, Transp Res Board Spec Rep 247, Washingt DC, pp 36–75

  • D’Agostino V, Cesca M, Marchi L (2010) Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology 115:294–304. https://doi.org/10.1016/j.geomorph.2009.06.032

    Article  Google Scholar 

  • D’Ambrosio D, Di Gregorio S, Iovine G (2003) Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3–hex. Nat Hazards Earth Syst Sci 3:545–559 https://doi.org/10.5194/nhess-3-545-2003

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87. https://doi.org/10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • De Haas T, Braat L, Leuven JRFW, Lokhorst IR, Kleinhans MG (2015) Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. J Geophys Res Earth Surf 120:1949–1972. https://doi.org/10.1002/2015JF003525

    Article  Google Scholar 

  • Deshpande PK (2009) Landslide hazard zonation mapping in Gopeshwar, Pipalkoti and Nandprayag areas of Uttarakhand. In: Indian geotechnical conference, Guntur, India, pp 808–812

  • Deubelbeiss Y, Graf C (2013) Two different starting conditions in numerical debris flow models–Case study at Dorfbach, Randa (Valais, Switzerland). GRAF, C(Red) Mattertal–ein Tal Bewegung, pp 125–138

  • Dobhal DP, Gupta AK, Mehta M, Khandelwal DD (2013) Kedarnath disaster: facts and plausible causes. Curr Sci 105:171–174

    Google Scholar 

  • Falae PO, Kanungo DP, Chauhan PKS, Dash RK (2019) Electrical resistivity tomography (ERT) based subsurface characterisation of Pakhi Landslide, Garhwal Himalayas, India. Environ Earth Sci 78:1–18. https://doi.org/10.1007/s12665-019-8430-x

    Article  Google Scholar 

  • Fan L, Lehmann P, McArdell B, Or D (2017) Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology 280:1–15. https://doi.org/10.1016/j.geomorph.2016.10.007

    Article  Google Scholar 

  • Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38:982–994. https://doi.org/10.1139/cgj-38-5-982

    Article  Google Scholar 

  • Federico F, Cesali C (2017) Numerical modeling of the debris flows runout. In: EPJ Web of Conferences, vol 140. EDP Sciences, pp 03002

  • Firmansyah, Feranie S, Tohari A, Latief FDE (2016) Prediction of landslide run-out distance based on slope stability analysis and center of mass approach. In: IOP Conf Ser Earth Environ Sci vol 29, https://doi.org/10.1088/1755-1315/29/1/012003

  • Frank F, McArdell BW, Huggel C, Vieli A (2015) The importance of entrainment and bulking on debris flow runout modeling: examples from the Swiss Alps. Nat Hazards Earth Syst Sci 15:2569–2583. https://doi.org/10.5194/nhess-15-2569-2015

    Article  Google Scholar 

  • Frank F, McArdell BW, Oggier N, Baer P, Christen M, Vieli A (2017) Debris-flow modeling at Meretschibach and Bondasca catchments, Switzerland: sensitivity testing of field-data-based entrainment model. Nat Hazards Earth Syst Sci 17:801–815. https://doi.org/10.5194/nhess-17-801-2017

    Article  Google Scholar 

  • Ghosh S, van Westen CJ, Carranza EJM, Jetten VG (2012) Integrating spatial, temporal, and magnitude probabilities for medium-scale landslide risk analysis in Darjeeling Himalayas, India. Landslides 9:371–384. https://doi.org/10.1007/s10346-011-0304-6

    Article  Google Scholar 

  • GSI Report (2014) Report on preliminary slope stability assessment of recent disaster affected areas of Chamoli District, Uttarakhand, Item Code LHZ/NR/UPUK/2013/54)

  • Huang T, Ding MT, She T, Tian SJ, Yang JT (2017) Numerical simulation of a high-speed landslide in Chenjiaba, Beichuan. China J Mt Sci 14(11):2137–2149. https://doi.org/10.1007/s11629-017-4516-7

    Article  Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623. https://doi.org/10.1139/t95-063

    Article  Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992. https://doi.org/10.1016/j.cageo.2007.12.003

    Article  Google Scholar 

  • Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanism, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management, vol 1. CRC Press, London, pp 99–128

  • Hussin HY, Quan Luna B, Van Westen CJ, Christen M, Malet JP, Van Asch TW (2012) Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Nat Hazards Earth Syst Sci 12:3075–3090. https://doi.org/10.5194/nhess-12-3075-2012

    Article  Google Scholar 

  • Hutchinson JN (1986) A sliding–consolidation model for flow slides. Can Geotech J 23(2):115–126. https://doi.org/10.1139/t86-021

    Article  Google Scholar 

  • Jaiswal P, Van Westen CJ, Jetten V (2010) Quantitative assessment of direct and indirect landslide risk along transportation lines in southern India. Nat Hazards Earth Syst Sci 10:1253–1267. https://doi.org/10.5194/nhess-10-1253-2010

    Article  Google Scholar 

  • Jaiswal P, Van Westen CJ, Jetten V (2011) Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India. Nat Hazards Earth Syst Sci 11:1723–1743. https://doi.org/10.5194/nhess-11-1723-2011

    Article  Google Scholar 

  • Kang C, Chan D, Su F, Cui P (2017) Runout and entrainment analysis of an extremely large rock avalanche—a case study of Yigong, Tibet, China. Landslides 14:123–139. https://doi.org/10.1007/s10346-016-0677-7

    Article  Google Scholar 

  • Kanungo DP, Sharma S (2014) Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas, India. Landslides 11(4):629–638. https://doi.org/10.1007/s10346-013-0438-9

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Gupta RP, Sarkar S (2008) Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides 5(4):407–416. https://doi.org/10.1007/s10346-008-0134-3

    Article  Google Scholar 

  • Kanungo DP, Sarkar S, Sharma S (2011) Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides. Nat Hazards 59:1491–1512. https://doi.org/10.1007/s11069-011-9847-z

    Article  Google Scholar 

  • Kanungo DP, Pain A, Sharma S (2013) Finite element modeling approach to assess the stability of debris and rock slopes: a case study from the Indian Himalayas. Nat Hazards 69:1–24. https://doi.org/10.1007/s11069-013-0680-4

    Article  Google Scholar 

  • Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res Solid Earth 110:1–13. https://doi.org/10.1029/2005JB003758

    Article  Google Scholar 

  • Khanduri S (2018) Landslide distribution and damages during 2013 Deluge: a case study of Chamoli district, Uttarakhand. J Geogr Nat Disasters 8(2):1–10. https://doi.org/10.4172/2167-0587.1000226

    Article  Google Scholar 

  • Klaus S, Barbara T, Brian M, Christoph G, Oldrich H, Roland K (2015) Modeling debris-flow runout pattern on a forested alpine fan with different dynamic simulation models. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory-volume 2. Springer, Cham, pp 1673–1676

    Chapter  Google Scholar 

  • Krauss Z, Borella J (2017) Application and evaluation of RAMMS rockfall modeling software in Purau, Banks Peninsula, New Zealand. University of Canterbury, Christchurch

    Google Scholar 

  • Krušić J, Abolmasov B, Marjanović& M, Djurić D (2018) RAMMS_Numerical modelling in RAMMS–Selanac debris flow. In: Second JTC1 work triggering propagation of rapid flow-like landslides, Hong Kong, pp 2–5

  • Kwan JSH, Sun HW (2006) An improved landslide mobility model. Can Geotech J 43:531–539. https://doi.org/10.1139/T06-010

    Article  Google Scholar 

  • Martha TR, van Westen CJ, Kerle N, Jetten V, Kumar KV (2013) Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology 184:139–150. https://doi.org/10.1016/j.geomorph.2012.12.001

    Article  Google Scholar 

  • McDougall S (2017) 2014 Canadian geotechnical colloquium: landslide runout analysis—current practice and challenges. Can Geotech J 54:605–620. https://doi.org/10.1139/cgj-2016-0104

    Article  Google Scholar 

  • Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142. https://doi.org/10.1007/s10346-007-0102-3

    Article  Google Scholar 

  • Mitra D, Bhandery C, Mukhopadhyay A, Chanda A, Hazra S (2018) Landslide risk assessment in Darjeeling hills using multi-criteria decision support system: a Bayesian network approach. In: Indrajit P, Shaw R (eds) Disaster risk governance in India and cross cutting issues. Springer, Singapore, pp 361–386

    Chapter  Google Scholar 

  • Mondal S, Mandal S (2018) Landslide susceptibility and risk: a micro level study from the Balason River basin in Darjeeling Himalaya. Arab J Geosci. https://doi.org/10.1007/s12517-018-3538-y

    Article  Google Scholar 

  • Nayak J, Westen CV, Das IC (2010) Landslide risk assessment along a major road corridor based on historical landslide inventory and traffic analysis. Dissertation, University of Twente

  • Nettleton IM, Martin S, Hencher S, Moore R (2005) Debris flow types and mechanisms. Scottish Road Netw Landslides Study, pp 1–119

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119(2):244–261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33(2):143–172. https://doi.org/10.1002/nag.705

    Article  Google Scholar 

  • Pirulli M, Mangeney A (2008) Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech Rock Eng 41:59–84. https://doi.org/10.1007/s00603-007-0143-x

    Article  Google Scholar 

  • Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philos Trans R Soc A Math Phys Eng Sci 363:1573–1601. https://doi.org/10.1098/rsta.2005.1596

    Article  Google Scholar 

  • Poisel R, Preh A (2007) Landslide detachment mechanisms: An overview of their mechanical models. Int Forum Landslide Disaster Manag 2007:1043–1058

    Google Scholar 

  • Pradhan B, Kalantar B, Abdulwahid WM, Dieu BT (2017) Debris flow susceptibility assessment using airborne laser scanning data. In: Pradhan B (ed) Laser scanning applications in landslide assessment. Springer, Cham, pp 279–296

    Chapter  Google Scholar 

  • Quan BR (2012) Dynamic numerical run out modeling for quantitative landslide risk assessment. Dissertation, University of Twente

  • Rautela P, Lakhera RC (2000) Landslide risk analysis between giri and tons rivers in Himachal Himalaya (India). Int J Appl Earth Obs Geoinf 2000:153–160. https://doi.org/10.1016/S0303-2434(00)85009-6

    Article  Google Scholar 

  • Rickenmann D, Laigle D, McArdell BW, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10(2):241–264. https://doi.org/10.1007/s10596-005-9021-3

    Article  Google Scholar 

  • Salm B (1993) Flow, flow transition and runout distances of flowing avalanches. Ann Glaciol 18:221–226. https://doi.org/10.1017/S0260305500011551

    Article  Google Scholar 

  • Salm B, Burkhard A, Gubler HU (1990) Berechnung von Fliesslawinen: EineAnleitungfuerPraktiker; mitBeispielen. Mitteilungen des EidgenoessischenInstitutsfuerSchneeund Lawinenforschung, vol 47, pp 1–37

  • Sarkar S (2018) Landslide risk assessment in parts of the Darjeeling Himalayas, India. In: Integrating disaster science and management. Elsevier, Amsterdam, pp 99–108

  • Sarkar S, Kanungo DP, Patra AK (2006) Landslides in the Alaknanda Valley of Garhwal Himalaya, India. Q J Eng Geol Hydrogeol 39:79–82. https://doi.org/10.1144/1470-9236/05-020

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Sharma S (2015) Landslide hazard assessment in the upper Alaknanda valley of Indian Himalayas. Geomatics Nat Hazards Risk 6:308–325. https://doi.org/10.1080/19475705.2013.847501

    Article  Google Scholar 

  • Sassa K (1988) Geotechnical model for the motion of landslides. In: Bonnard C (ed) Proceedings of 5th international symposium on landslides. Lausanne, Balkema, Rotterdam, pp 37–55

  • Scheidl C, Rickenmann D, Mcardell BW (2013) Runout prediction of debris flows and similar mass movements. In: Margottini C, Canuti P, Sassa K (eds) Landslide Sci Pract vol 3, pp 221–229. https://doi.org/10.1007/978-3-642-31310-3

  • Scheuner T, Schwab S, McArdell BW (2011) Application of a two-dimensional numerical model in risk and hazard assessment in Switzerland. In: Int conf debris-flow hazards mitig mech predict assessment, proc, pp 993–1001. https://doi.org/10.4408/IJEGE.2011-03.B-108

  • Schraml K, Thomschitz B, Mcardell BW, Graf C, Kaitna R (2015) Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat Hazards Earth Syst Sci 15:1483–1492. https://doi.org/10.5194/nhess-15-1483-2015

    Article  Google Scholar 

  • Simoni A, Mammoliti M, Graf C (2012) Performance of 2D debris flow simulation model RAMMS. Back-analysis of field events in Italian Alps. In: Annual international conference on geological and earth sciences https://doi.org/10.5176/2251-3361_geos12.59

  • Validiya KS (1980) Geology of Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehradun

    Google Scholar 

  • Xing A, Yuan X, Xu Q, Zhao Q, Huang H, Cheng Q (2017) Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley, Mianzhu, Sichuan, China. Landslides 14:83–98. https://doi.org/10.1007/s10346-016-0707-5

    Article  Google Scholar 

Download references

Acknowledgements

The first author Rajesh Kumar Dash (DST INSPIRE FELLOW, IF160158) acknowledges Department of Science and Technology, New Delhi for providing fellowship to carry out his Doctoral Research. The authors are grateful to the Director, CSIR-Central Building Research Institute, Roorkee for granting permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debi Prasanna Kanungo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, R.K., Kanungo, D.P. & Malet, J.P. Runout modelling and hazard assessment of Tangni debris flow in Garhwal Himalayas, India. Environ Earth Sci 80, 338 (2021). https://doi.org/10.1007/s12665-021-09637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09637-z

Keywords

Navigation