Skip to main content
Log in

Results of Back-Analysis of the Propagation of Rock Avalanches as a Function of the Assumed Rheology

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary.

Numerical simulation can provide a useful tool for investigating the dynamics of phenomena like rock avalanches, within realistic geological contexts and in the framework of a better risk assessment and decision making. Difficulties in numerical modelling of a heterogeneous moving mass are mainly linked to the simulation of the complex behaviour assumed by the mass during propagation.

The numerical code RASH3D, based on a continuum mechanics approach and on the long wave approximation, is used to back-analyse two cases of rock avalanches: Frank (1903, Canada) and Val Pola (1987, Italy). The two events are characterised by approximately the same volume (about 30 × 106 m3) while the run out area morphologies are widely different.

Three alternative “rheologies” (Frictional, Voellmy and Pouliquen) are used. Comparison among obtained results underlines that the validation of a “rheology” requires not only a good agreement between the numerical simulation results and the run out area boundaries but also in term of depth distribution of the mass in the deposit.

In case of a Frictional rheology, the obtained calibrated dynamic friction angle values are in a range of 15 ± 1° for both the cases; while assuming a Pouliquen or a Voellmy rheology it emerges a different behaviour of rheological parameters for each of the considered events.

Besides the calibration of rheological parameters to better back-analyse each of the considered events, it is investigated how the behaviour due to the assumed rheology is influenced by the geometry of the run out area (e.g. narrow or broad valley).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abele, G. (1974): Bergstruze in den Alpen [Landslides in the Alps]. Wissenschaftliche Alpenvereinshefte, 25, München, 230.

  • Audusse, E., Bristeau, M. O., Perthame, B. (2000): Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Rep. 3989, Natl. Inst. Res. Comput. Sci. and Control, Le Chesnay, France.

  • Bagnold, R. A. (1954): Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Royal Soc., London Ser. A 225, 49–63.

  • F. Bouchut M. Westdickenberg (2004) ArticleTitleGravity driven shallow water models for arbitrary topography Comm. Math. Sci. 2 359–389

    Google Scholar 

  • Bristeau, M. O., Coussin, B., Perthame, B. (2001): Boundary conditions for the shallow water equations solved by kinetic schemes. INRIA Rep. 4282, Natl. Inst. Res. Comput. Sci. and Control, Le Chesnay, France.

  • Chiesa, S., Azzoni, A. (1988): Esecuzione di rilievi geologici e geostrutturali sulla frana di Val Pola [A geological and geostructural field survey of the Val Pola landslide]. Bergamo, ISMES Report PROG/ASP/4284, RTF-DGM-02150, 57.

  • J. E. Costa (1991) ArticleTitleNature, mechanics and mitigation of the Val Pola landslide, Valtellina, Italy, 1987–1988 Zeirschrift fur Geomorphologie N.F. 35 15–38

    Google Scholar 

  • D. M. Cruden J. Krahn (1978) Frank Rockslide, Alberta, Canada B. Voight (Eds) Rockslides and Avalanches SeriesTitleNatural Phenomena NumberInSeries1 Elsevier Scientific Publishing Company Amsterdam 97–112

    Google Scholar 

  • D. M. Cruden O. Hungr (1986) ArticleTitleThe debris of the Frank Slide and theories of rockslide-avalanche mobility Can. J. Earth Sci. 23 425–432 Occurrence Handle10.1139/e86-044

    Article  Google Scholar 

  • T. R. Davies (1982) ArticleTitleSpreading of rock avalanches by mechanical fluidization Rock Mech. 15 9–24 Occurrence Handle10.1007/BF01239474

    Article  Google Scholar 

  • R. P. Denlinger R. M. Iverson (2001) ArticleTitleFlow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests J. Geophys. Res. 106 553–566 Occurrence Handle10.1029/2000JB900330

    Article  Google Scholar 

  • Eckart, W., Faria, S., Hutter, K., Kirchner, N., Pudasaini, S., Wang, Y. (2002): Continuum description of granular materials. Spring School at the Department of Structural and Geotechnical Engineering, Politechnical Institute, Turin, Italy, 8–12 April.

  • Govi, M., Gullà, G., Nicoletti, P. G. (2002): Val Pola rock avalanche of July 28, 1987. In: Evans, S. G., DeGraff, J. V. (eds.), Valtellina (Central Italian Alps), in Catastrophic Landslides: Effects, Occurrence, and Mechanisms, Review in Engineering Geology Volume XV, The Geological Society of America.

  • Gray, J. M. N. T., Wieland, M., Hutter, K. (1999): Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. Royal Soc. London. Ser. A, 455 (1841).

  • Heim, A. (1932): Bergsturz und Menschenleben. Fretz und Wasmuth, Zurich, 218. [English translation by Skermer, N. A., – Landslides and human lives, BiTech Publishers, Vancouver, 195, 1989].

  • P. Heinrich G. Boudon J. C. Komorowvski R. S. J. Sparks R. Herd B. Voight (2001) ArticleTitleNumerical simulation of the December 1997 debris avalanche in Montserrat, Lesser Antilles Geophys. Res. Lett. 28 2529–2532 Occurrence Handle10.1029/2001GL012968

    Article  Google Scholar 

  • K. J. Hsu (1975) ArticleTitleCatastrophic debris streams (sturzstroms) generated by rockfalls Bull. Geol. Society America 86 129–140 Occurrence Handle10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2

    Article  Google Scholar 

  • O. Hungr (1995) ArticleTitleA model for the runout analysis of rapid flow slides, debris flows, and avalanches Can. Geotech. J. 32 610–623 Occurrence Handle10.1139/t95-063

    Article  Google Scholar 

  • Hungr, O., Evans, S. G. (1996): Rock avalanche run out prediction using a dynamic model. Proc., 7th Int. Symp. Landslides, Trondheim, Norway, Vol. 1, 233–238.

  • Hungr, O., Evans, S. G. (1997): A dynamic model for landslides with changing mass. Proc., Int. Symp. Engineering Geology and the Environment, 23–27 June, Athens, Greece, 719–724.

  • O. Hungr S. G. Evans M. Bovis J. N. Hutchinson (2001) ArticleTitleReview of the classification of landslides of the flow type Environ. Eng. Geosci. 7 221–238

    Google Scholar 

  • Hungr, O., Corominas, J., Eberhardt, E. (2005): Estimating landslide motion mechanism, travel distance and velocity. Proc., Int. Conf. Landslide Risk Management, 31 May–3 June, Vancouver, Canada, 99–128.

  • C. R. J. Kilburn S. A. Sorensen (1998) ArticleTitleRunout lenghts of sturzstroms: The control of initial conditions and of fragment dynamics J. Geophys. Res. 103 17877–17884 Occurrence Handle10.1029/98JB01074

    Article  Google Scholar 

  • H. J. Koerner (1976) ArticleTitleReichweite und Geschwindigkeit von Bergsturzen und fleisschneelawinen Rock Mech. 8 225–256 Occurrence Handle10.1007/BF01259363

    Article  Google Scholar 

  • T. Li (1983) ArticleTitleA mathematical model for predicting the extent of a major rockfall Z. Geomorphol. 27 473–482

    Google Scholar 

  • A. Mangeney P. Heinrich R. Roche (2000) ArticleTitleAnalytical solution for testing debris avalanche numerical models Pure Appl. Geophys. 157 1081–1096 Occurrence Handle10.1007/s000240050018

    Article  Google Scholar 

  • Mangeney-Castelnau, A., Vilotte, J.-P., Bristeau, M. O., Perthame, B., Bouchut, F., Simeoni, C., Yernini, S. (2003): Numerical modelling of debris avalanche based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 108 (B11), EPM 9, 1–18.

    Google Scholar 

  • Mangeney-Castelnau, A., Bouchut, F., Vilotte, J. P., Lajeunesse, E., Aubertin, A., Pirulli, M. (2005): On the use of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110.

  • McConnell, R. G., Brock, R. W. (1904): Report on the great landslide at Frank, Alberta. Department of the Interior (Canada), Annual Report 1903, part 7, 17.

  • S. McDougall O. Hungr (2004) ArticleTitleA model for the analysis of rapid landslide runout motion across three-dimensional terrain Can. Geotech. J. 41 1084–1097 Occurrence Handle10.1139/t04-052

    Article  Google Scholar 

  • S. McDougall O. Hungr (2005) ArticleTitleDynamic modelling of entrainment in rapid landslides Can. Geotech. J. 42 1437–1448 Occurrence Handle10.1139/t05-064

    Article  Google Scholar 

  • McLellan P. J., Kaiser, P. K. (1984): Application of a two-parameter model to rock avalanches in the Mackenzie Mountains. Proc., 4th Int. Symp. Landslides, Toronto, Vol. 1, 135–140.

  • G. Nicoletti M. Sorriso-Valvo (1991) ArticleTitleGeomorphic controls of the shape and mobility of rock avalanches Geol. Soc. Am. Bull. 103 1365–1373 Occurrence Handle10.1130/0016-7606(1991)103<1365:GCOTSA>2.3.CO;2

    Article  Google Scholar 

  • Pirulli, M. (2005): Numerical modelling of landslide runout, a continuum mechanics approach. Ph.D. Thesis in Geotechnical Engineering, Supervisor: Prof. Scavia Claudio, Politecnico di Torino, Italy.

  • Pirulli, M., Bristeau, M. O., Mangeney, A., Scavia, C. (2006): The effect of earth pressure coefficient on the runout of granular material. Environ. Modell. Softw. (in press).

  • O. Pouliquen (1999) ArticleTitleScaling laws in granular flows down rough inclined planes Phys. Fluid. 11 542–548 Occurrence Handle10.1063/1.869928

    Article  Google Scholar 

  • S. B. Savage K. Hutter (1989) ArticleTitleThe motion of a finite mass of granular material down a rough incline J. Fluid. Mech. 199 177–215 Occurrence Handle10.1017/S0022112089000340

    Article  Google Scholar 

  • A. E. Scheidegger (1973) ArticleTitleOn the prediction of the reach and velocity of catastrophic landslides Rock Mech. 5 231–236 Occurrence Handle10.1007/BF01301796

    Article  Google Scholar 

  • Smith, D., Hungr, O. (1992): Failure behaviour of large rockslide, Report to the Geological Survey of Canada and B.C. Hydro and Power Authority, DSS Contract Number 23397-9-0749/01-SZ), Thurber Engineering Ltd., Vancouver, B.C.

  • Varnes, D. J. (1978): Slope movement types and processes. In: Schuster, R. J., Krizek, R. J. (eds.), Landslides, analysis and control: transportation research board, National Academy of Sciences, Washington DC. Special Report 176, 11–33.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authors’ addresses: Marina Pirulli, Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy; Anne Mangeney, Equipe de Sismologie, Institut de Physique du Globe de Paris, Université Denis Diderot, 4 Place Jussieu, 75005 Paris, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirulli, M., Mangeney, A. Results of Back-Analysis of the Propagation of Rock Avalanches as a Function of the Assumed Rheology. Rock Mech Rock Eng 41, 59–84 (2008). https://doi.org/10.1007/s00603-007-0143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-007-0143-x

Navigation