Skip to main content
Log in

A new data assimilation procedure to develop a debris flow run-out model

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Parameter calibration is one of the most problematic phases of numerical modeling since the choice of parameters affects the model’s reliability as far as the physical problems being studied are concerned. In some cases, laboratory tests or physical models evaluating model parameters cannot be completed and other strategies must be adopted; numerical models reproducing debris flow propagation are one of these. Since scale problems affect the reproduction of real debris flows in the laboratory or specific tests used to determine rheological parameters, calibration is usually carried out by comparing in a subjective way only a few parameters, such as the heights of soil deposits calculated for some sections of the debris flows or the distance traveled by the debris flows using the values detected in situ after an event has occurred. Since no automatic or objective procedure has as yet been produced, this paper presents a numerical procedure based on the application of a statistical algorithm, which makes it possible to define, without ambiguities, the best parameter set. The procedure has been applied to a study case for which digital elevation models of both before and after an important event exist, implicating that a good database for applying the method was available. Its application has uncovered insights to better understand debris flows and related phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barbieri, G. et al (1980). Carta geologica dell’area di Recoaro. Padova, 1980. Mem. Sc. Geol. XXXIV. [in Italian]

  • Baù D et al (2015) Ensemble smoothing of land subsidence measurements for reservoir geomechanical characterization. Int J Numer Anal Methods Geomech 39:207–228. doi:10.1002/nag.2309

    Article  Google Scholar 

  • Bertolo P, Wieczorek F (2005) Calibration of numerical models for small debris flows in Yosemite Valley, California, USA. Nat Hazard Earth Syst Sci 5:993–1001. doi:10.5194/nhess-5-993-2005

    Article  Google Scholar 

  • Bossi G et al (2015a) Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (eastern Italian Alps). Nat Hazards Earth Syst Sci 15:715–722. doi:10.5194/nhess-15-715-2015

    Article  Google Scholar 

  • Bossi G et al (2015b) The Rotolon catchment early-warning system. Eng Geol Soc Territory 3:91–95. doi:10.1007/978-3-319-09054-2

    Google Scholar 

  • Capparelli G, Versace P (2011) FLaIR and SUSHI: two mathematical models for early warning of landslides induced by rainfal. Landslides 8:67–79. doi:10.1007/s10346-010-0228-6

    Article  Google Scholar 

  • Cavalli M, Tarolli P (2011) Application of LiDAR technology for rivers analysis. Ital J Eng Geol and Environ, Special Issue(1), pp.33-44. DOI: 10.4408/IJEGE.2011-01.S-03

  • Cleary PW, Prakash M (2004) Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos Trans R Soc A-Math Phys Eng Sci 362(1822):2003–2030. doi:10.1098/rsta.2004.1428

    Article  Google Scholar 

  • Cola S, Bossi G, Munari S, Brezzi L, Marcato G (2014) Applicability of two propagation models to simulate the Rotolon earth-flow occurred in November 2010. XII International IAEG Congress 2:1683–1687. doi:10.1007/978-3-319-09057-3_299

    Google Scholar 

  • Cola S, Calabrò N, Simonini P, Pastor M (2013) Effects of grain-size composition examined in laboratory and numerical tests on artificial mud-flows. Landsl Sci Pract 3(2):319–325. doi:10.1007/978-3-642-31310-3_43

    Article  Google Scholar 

  • De Zanche V, Mietto, P (1981) Review of the Triassic sequence of Recoaro (Italy) and related problems. Padova, 1981. Rend. Soc. Geol. It

  • Eckhardt K, Arnold JG (2001) Automatic calibration of a distributed catchment model. J Hydrol 251(1-2):103–109. doi:10.1016/S0022-1694(01)00429-2

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367. doi:10.1007/s10236-003-0036-9

    Article  Google Scholar 

  • Frigerio S et al (2014) A web-based platform for automatic and continuous landslide monitoring: the Rotolon (Eastern Italian Alps) case study. Comput Geosci 63:96–105. doi:10.1016/j.cageo.2013.10.015

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris-flow: an update. Landslides 5(1):3–17. doi:10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623. doi:10.1139/t95-063

    Article  Google Scholar 

  • Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102(3-4):152–163. doi:10.1016/j.enggeo.2008.03.012

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245. doi:10.1029/97RG00426

    Article  Google Scholar 

  • Lacasse S, Nadim F (2009) Landslide risk assessment and mitigation strategy. Landslides - Disaster Risk Reduction, pp.31-62. DOI: 10.1007/978-3-540-69970-5_3.

  • Liu GR, Liu, MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific. ISBN: 9812564403, 9789812564405.

  • Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Meth Eng 17(1):25–76. doi:10.1007/s11831-010-9040-7

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097. doi:10.1139/t04-052

    Article  Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42(5):1437–1448. doi:10.1139/t05-064

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574. doi:10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  • Pastor M et al (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11:793–812. doi:10.1007/s10346-014-0484-y

    Article  Google Scholar 

  • Pastor M et al (2008) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33(2):143–172. doi:10.1002/nag.705

    Article  Google Scholar 

  • Pirulli M, (2005) Numerical modelling of landslide runout, a continuum mechanics approach. Ph.D. Degree in Geotechnical Engineering, Politecnico di Torino (Italy)

  • Pirulli M, Pastor M (2012) Numerical study on the entrainment of bed material into rapid landslides. Geotechnique 62(11):959–972. doi:10.1680/geot.10.P.074

    Article  Google Scholar 

  • Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazard Earth Syst Sci 8(4):961–971. doi:10.5194/nhess-8-961-2008

    Article  Google Scholar 

  • Pudasaini SP, Wang Y, Hutter K (2005) Modelling debris flows down general channels. Nat Hazards Earth Syst Sci 5(6):799–819. doi:10.5194/nhess-5-799-2005

    Article  Google Scholar 

  • Quan Luna B et al (2011) The application of numerical debris flow modelling for the generation of physical vulnerability curves. Nat Hazard Earth Syst Sci 11:2047–2060. doi:10.5194/nhess-11-2047-2011

    Article  Google Scholar 

  • Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ Geol 45:295–311. doi:10.1007/s00254-003-0885-z

    Article  Google Scholar 

  • Robinson AR, Wastald LJ (1987) The Harvard open ocean model: calibration and application to dynamical process, forecasting, and data assimilation studies. Appl Numer Math 3(1-2):89–131. doi:10.1016/0168-9274(87)90008-0

    Article  Google Scholar 

  • Schädler W, Borgatti L, Corsini A, Meier J, Ronchetti F, Schanz T (2015) Geomechanical assessment of the Corvara earthflow through numerical modelling and inverse analysis. Landslides 12(3):495–510. doi:10.1007/s10346-014-0498-5

    Article  Google Scholar 

  • Sosio R, Crosta G, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1-2):11–26. doi:10.1016/j.enggeo.2008.02.012

    Article  Google Scholar 

  • Takahashi, T (2014) Debris flow: mechanics, prediction and countermeasures. 2nd ed. ISBN: 1138000078, 9781138000070

  • Trivelli G (1991) Storia del territorio e delle genti di Recoaro. Istituto Geografico De Agostini, Novara [in Italian]

    Google Scholar 

  • Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweiz Bauzeitung 73:159–285

    Google Scholar 

  • Wu Y-H, Liu K-F, Chen Y-C (2013) Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study. J Mt Sci 10(2):293–304. doi:10.1007/s11629-013-2511-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brezzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brezzi, L., Bossi, G., Gabrieli, F. et al. A new data assimilation procedure to develop a debris flow run-out model. Landslides 13, 1083–1096 (2016). https://doi.org/10.1007/s10346-015-0625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0625-y

Keywords

Navigation