Skip to main content
Log in

Geochemical normalization of magnetic susceptibility for investigation of floodplain sediments

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Magnetic susceptibility (MS) is commonly used as a proxy for industrial pollution in natural sediments or as a proxy for the percentage of detrital components in peat or carbonates. The MS may also reflect the geology of the sediment source and post-depositional processes in sediments, such as soil development. The aim of our research was to test the usefulness of Fe-normalized mass-specific MS (χ) and Ti-normalized Fe in a study of floodplain sediments. We sampled 27 floodplain sediment cores from several geologically different catchments throughout the Czech Republic, analysed their Fe and Ti concentrations using X-ray fluorescence spectroscopy, and determined their χ. To decipher sediment grain-size dependence and possible magnetic enrichment, background functions for χ were constructed using similar approach as that used for geochemical background functions of the risk element concentrations with Fe concentrations as an independent variable. It provides a mechanism to calculate χ of sediments as it would be “pristine”, i.e. without post-depositional changes and pollution. Sediments derived from “mafic” source rocks had χ/Fe larger by two orders of magnitude than sediments derived from “felsic” rocks. Sediments derived from “mafic” source rocks also exhibit lower mean Fe/Ti ratio in pristine sediment strata than the average upper continental crust. The magnetic carriers inherited from mafic rocks are stepwise destroyed by pedogenesis in the floodplains and thus slowly approach χ of sediments derived from felsic rocks. Gleying processes may change χ/Fe, Fe/Ti ratio allows identifying a past action of those post-depositional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aidona E, Grison H, Petrovsky E, Kazakis N, Papadopoulou L, Voudouris K (2016) Magnetic characteristics and trace elements concentration in soils from Anthemountas River basin (North Greece): discrimination of different sources of magnetic enhancement. Environ Earth Sci 75:20. https://doi.org/10.1007/s12665-016-6114-3

    Article  Google Scholar 

  • Bábek O, Hilscherová K, Nehyba S, Zeman J, Faměra M, Franců J, Holoubek I, Machát J, Klánová J (2008) Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. J Soils Sediments 8:165–176. https://doi.org/10.1007/s11368-008-0002-8

    Article  Google Scholar 

  • Bábek O, Matys Grygar T, Faměra M, Hron K, Nováková T, Sedláček J (2015) Geochemical background in polluted river sediments: how to separate the effects of sediment provenance and grain size with statistical rigour? CATENA 135:240–253

    Article  Google Scholar 

  • Blaha U, Appel E, Stanjek H (2008) Determination of anthropogenic boundary depth in industrially polluted soil and semi-quantification of heavy metal loads using magnetic susceptibility. Environ Pollut 156(2):278–289

    Article  Google Scholar 

  • Bouchez J, Gaillardet J, France-Lanord C, Maurice L, Dutra-Maia P (2011) Grain size control of river suspended sediment geochemistry: clues from Amazon River depth profiles. Geochem Geophys Geosyst. https://doi.org/10.1029/2010GC003380

    Google Scholar 

  • Chaparro MAE, Bidegain JC, Sinito AM, Jurado SS, Gogorza CSG (2004) Relevant magnetic parameters and heavy metals from relatively polluted stream sediments—vertical and longitudinal distribution along a cross-city stream in Buenos Aires province, Argentina. Stud Geophys Geod 48:615–636

    Article  Google Scholar 

  • Chudaničová M, Hutchinson SM (2016) Magnetic signature of overbank sediment in industry impacted floodplains identified by data mining Methods. Geophys J Int 207(2):1106–1121. https://doi.org/10.1093/gji/ggw321

    Article  Google Scholar 

  • Chudaničová M, Hutchinson SM, Hradecký J, Sedláček J (2016) Environmental magnetism as a dating proxy for recent overbank sediments of (peri-)industrial regions in the Czech Republic and UK. CATENA 142:21–35. https://doi.org/10.1016/j.catena.2016.02.008

    Article  Google Scholar 

  • Costanzo-Álvarez V, Devesa-Rey R, Aldana M, Barral MT, López-Rodríguez D, Andrade B (2017) Magnetic properties of surface sediments as proxies of recent anthropogenic pollution in the Anllóns riverbed (NW Spain). Environ Earth Sci 76:454. https://doi.org/10.1007/s12665-017-6785-4

    Article  Google Scholar 

  • Dearing JA, Lees JA, White C (1995) Mineral magnetic properties of acid gleyed soils under oak and Corsican Pine. Geoderma 68:309–319. https://doi.org/10.1016/0016-7061(95)00040-1

    Article  Google Scholar 

  • Desenfant F, Petrovský E, Rochette P (2004) Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. Water Air Soil Pollut 152:297–312

    Article  Google Scholar 

  • Dlouhá Š, Petrovský E, Kapička A, Borůvka L, Ash Ch, Drábek O (2013) Investigation of polluted soils by magnetic susceptibility methods: a case study of the Litavka River. Soil Water Res 8(4):151–157

    Article  Google Scholar 

  • Ettler V, Mihaljevič M, Šebek O, Molek M, Grygar T, Zeman D (2006) Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram, Czech Republic. Environ Pollut 142:409–417

    Article  Google Scholar 

  • Evans ME, Heller F (2001) Magnetism of loess/palaeosol sequences: recent developments. Earth Sci Rev 54:129–144

    Article  Google Scholar 

  • Faměra M, Bábek O, Matys Grygar T, Nováková T (2013) Distribution of heavy-metal contamination in regulated river-channel deposits: a magnetic susceptibility and grain-size approach; River Morava, Czech Republic. Water Air Soil Pollut 224:1525

    Article  Google Scholar 

  • Fialová H, Maier G, Petrovský E, Kapička A, Boyko T, Scholger R (2006) Magnetic properties of soils from sites with different geological and environmental settings. J Appl Geophys 59:273–283. https://doi.org/10.1016/j.jappgeo.2005.10.006

    Article  Google Scholar 

  • Frančišković-Bilinski S, Scholger R, Bilinski H, Tibljaš D (2014) Magnetic, geochemical and mineralogical properties of sediments from karstic and flysch rivers of Croatia and Slovenia. Environ Earth Sci 72:3939–3953. https://doi.org/10.1007/s12665-014-3282-x

    Article  Google Scholar 

  • Frančišković-Bilinski S, Bilinski H, Maldini K, Milović S, Zhang Q, Appel E (2017) Chemical and magnetic tracing of coal slag pollutants in karstic river sediments. Environ Earth Sci 76:476. https://doi.org/10.1007/s12665-017-6792-5

    Article  Google Scholar 

  • Geiss C, Zanner W (2006) How abundant is pedogenic magnetite? Abundance and grain size estimates for loessic soils based on rock magnetic analyses. J Geophys Res 111:B12S21. https://doi.org/10.1029/2006JB004564

    Article  Google Scholar 

  • Grimley D, Arruda NK, Bramstedt MW (2004) Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the midwestern USA. CATENA 58(2):183–213

    Article  Google Scholar 

  • Grison H, Petrovský E, Stejskalová Š, Kapička A (2015) Magnetic and geochemical characterization of Andosols developed on basalts in the Massif Central, France. Geochem Geophys Geosyst 16:1348–1363. https://doi.org/10.1002/2015GC005716

    Article  Google Scholar 

  • Grison H, Petrovský E, Kapička A, Stejskalová Š (2016) Magnetic and chemical parameters of andic soils and their relation to selected pedogenesis factors. CATENA 139:179–190. https://doi.org/10.1016/j.catena.2015.12.005

    Article  Google Scholar 

  • Hanesch M, Scholger R (2002) Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ Geol 42:857–870. https://doi.org/10.1007/s00254-0020604-1

    Article  Google Scholar 

  • Hanesch M, Rantitsch G, Hemetsberger S, Scholger R (2007) Lithological and pedological influences on the magnetic susceptibility of soil: their consideration in magnetic pollution mapping. Sci Total Environ 382:351–363

    Article  Google Scholar 

  • Heller F, Strzyszcz Z, Magiera T (1998) Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland. J Geophys Res Solid Earth 103(B8):17767–17774

    Article  Google Scholar 

  • Hrouda F, Kahan S (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains, N. Slovakia. J Struct Geol 13:431–432

    Article  Google Scholar 

  • Hu XF, Su Y, Ye R, Li XQ, Zhang GL (2007) Magnetic properties of the urban soils in Shanghai and their environmental implications. CATENA 70:428–436. https://doi.org/10.1016/j.catena.2006.11.010

    Article  Google Scholar 

  • Jaffar STA, Chen L, Younas H, Ahmad N (2017) Heavy metals pollution assessment in correlation with magnetic susceptibility in topsoils of Shanghai. Environ Earth Sci 76:277. https://doi.org/10.1007/s12665-017-6598-5

    Article  Google Scholar 

  • Jordanova D, Jordanova N, Werban U (2012) Environmental significance of magnetic properties of Gley soils near Rosslau (Germany). Environ Earth Sci 69(5):1719–1732

    Article  Google Scholar 

  • Jordanova N, Jordanova D, Petrov P (2016) Soil magnetic properties in Bulgaria at a national scale-challenges and benefits. Glob Planet Change 137:107–122

    Article  Google Scholar 

  • Kadlec J, Grygar T, Světlík I, Ettler V, Mihaljevič M, Diehl JF, Beske-Diehl S, Svitavská-Svobodová H (2009) Morava River floodplain development during the last millennium, Strážnické Pomoraví, Czech Republic. Holocene 19(30):499–509

    Article  Google Scholar 

  • Kapička A, Petrovský E, Ustjak S, Macháčková K (1998) Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J Geochem Explor 66(1–2):291–297

    Google Scholar 

  • Knab M, Hoffmann V, Petrovský E, Kapička A, Jordanova N, Appel E (2006) Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility. Environ Geol 49:527–535. https://doi.org/10.1007/s00254-005-0080-5

    Article  Google Scholar 

  • Kružíková K, Kensová R, Sedláčková L (2013) The correlation between fish mercury liver/muscle ratio and high and low levels of mercury contamination in Czech localities. Int J Electrochem Sci 8(1):45–56

    Google Scholar 

  • Laceby JP, McMahon J, Evrard O, Olley J (2015) A comparison of geological and statistical approaches to element selection for sediment fingerprinting. J Soils Sedim 15(10):2117–2131

    Article  Google Scholar 

  • Lu SG (2000) Lithological factors affecting magnetic susceptibility of subtropical soils, Zhejiang Province, China. CATENA 40(4):359–373

    Article  Google Scholar 

  • Lu SG, Bai SQ (2006) Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China. J Appl Geophys 60(1):1–12. https://doi.org/10.1016/j.jappgeo.2005.11.002

    Article  Google Scholar 

  • Lu SG, Zhu L, Yu JY (2012) Mineral magnetic properties of Chinese paddy soils and its pedogenic implications. CATENA 93:9–17

    Article  Google Scholar 

  • Magiera T, Strzyszcz Z, Kapicka A, Petrovsky E (2006) Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma 130(3–4):299–311. https://doi.org/10.1016/j.geoderma.2005.02.002

    Article  Google Scholar 

  • Magiera T, Strzyszcz Z, Rachwal M (2007) Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region, Poland. For Ecol Manag 248(1–2):36–42. https://doi.org/10.1016/j.foreco.2007.02.034

    Article  Google Scholar 

  • Magiera T, Parzentny H, Łukasik A (2016) The influence of the wind direction and plants on the variability of topsoil magnetic susceptibility in industrial and urban areas of southern Poland. Environ Earth Sci 75:213. https://doi.org/10.1007/s12665-015-4846-0

    Article  Google Scholar 

  • Maher BA, Thompson R (1995) Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quat Res 44(3):383–391. https://doi.org/10.1006/qres.1995.1083

    Article  Google Scholar 

  • Majerová L, Matys Grygar T, Elznicová J, Strnad L (2013) The Differentiation between Point and Diffuse Industrial Pollution of the Floodplain of the Ploučnice River, Czech Republic. Water Air Soil Pollut 224:1688

    Article  Google Scholar 

  • Matys Grygar T, Popelka J (2016) Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J Geochem Explor 170:30–57. https://doi.org/10.1016/j.gexplo.2016.08.003

    Article  Google Scholar 

  • Matys Grygar T, Nováková T, Mihaljevič M, Strnad L, Světlík I, Koptíková L, Lisá L, Brázdil R, Máčka Z, Stachoň Z, Svitavská-Svobodová H, Wray DS (2011) Surprisingly small increase of the sedimentation rate in the floodplain of Morava River in the Strážnice area, Czech Republic, in the last 1300 years. CATENA 86:192–207

    Article  Google Scholar 

  • Matys Grygar T, Sedláček J, Bábek O, Nováková T, Strnad L, Mihaljevič M (2012) Regional contamination of Moravia (South-Eastern Czech Republic): temporal shift of Pb and Zn loading in fluvial sediments. Water Air Soil Pollut 223:739–753. https://doi.org/10.1007/s11270-011-0898-2

    Article  Google Scholar 

  • Matys Grygar T, Nováková T, Bábek O, Elznicová J, Vadinová N (2013) Robust assessment of moderate heavy metal contamination levels in floodplain sediments: a case study on the Jizera River, Czech Republic. Sci Total Environ 452–453:233–245

    Article  Google Scholar 

  • Matys Grygar T, Elznicová J, Bábek O, Hošek M, Engel Z, Kiss T (2014) Obtaining isochrones from pollution signals in a fluvial sediment record: a case study in a uranium-polluted floodplain of the Ploučnice River, Czech Republic. Appl Geochem 48:1–15

    Article  Google Scholar 

  • Matys Grygar T, Elznicová J, Tůmová Š, Faměra M, Balogh M, Kiss T (2016a) Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography. Geomorphology 254:41–56

    Article  Google Scholar 

  • Matys Grygar T, Elznicová J, Kiss T, Smith HG (2016b) Using sedimentary archives to reconstruct pollution history and sediment provenance: the Ohře River, Czech Republic. CATENA 144:109–129

    Article  Google Scholar 

  • Morton-Bermea O, Hernandez E, Martinez-Pichardo E, Soler-Arechalde AM, Lozano Santa-Cruz R, Gonzales-Hernandez G, Beramendi-Orosco L, Urrutia-Fucugauchi J (2009) Mexico City topsoils: heavy metals vs. magnetic susceptibility. Geoderma 151:121–125. https://doi.org/10.1016/j.geoderma.2009.03.019

    Article  Google Scholar 

  • Mullins CE (1977) Magnetic susceptibility and its significance in soil science—a review. J Soil Sci 28:223–246

    Article  Google Scholar 

  • Navrátil T, Rohovec J, Žák K (2008) Floodplain sediments of the 2002 catastrophic flood at the Vltava (Moldau) River and its tributaries: mineralogy, chemical composition, and post-sedimentary evolution. Environ Geol 56(2):399–412

    Article  Google Scholar 

  • Nováková T, Matys Grygar T, Bábek O, Faměra M, Mihaljevič M, Strnad L (2013) Distinguishing regional and local sources of pollution by trace metals and magnetic particles in fluvial sediments of the Morava River, Czech Republic. J Soils Sediments 13:460–473. https://doi.org/10.1007/s11368-012-0632-8

    Article  Google Scholar 

  • Nováková T, Kotková K, Elznicová J, Strnad L, Engel Z, Matys Grygar T (2015) Pollutant dispersal and stability in a severely polluted floodplain: a case study in the Litavka River, Czech Republic. J Geochem Explor 156:131–144

    Article  Google Scholar 

  • Nováková T, Matys Grygar T, Kotková K, Elznicová J, Strnad L, Mihaljevič M (2016) Pollution assessment using local enrichment factors: the Berounka River (Czech Republic). J Soils Sediments 16(3):1081–1092. https://doi.org/10.1007/s11368-015-1315-z

    Article  Google Scholar 

  • Pérez I, Romero FM, Zamora O, Gutiérrez-Ruiz ME (2014) Magnetic susceptibility and electrical conductivity as a proxy for evaluating soil contaminated with arsenic, cadmium and lead in a metallurgical area in the San Luis Potosi State, Mexico. Environ Earth Sci 72(5):1521–1531. https://doi.org/10.1007/s12665-014-3057-4

    Article  Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ Geol 39(9):1001–1014

    Article  Google Scholar 

  • Rochette P (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J Struct Geol 9(8):1015–1020

    Article  Google Scholar 

  • Rudnick R, Gao S (2003) Composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) The crust, treatise on geochemistry, vol 3. Elsevier, Oxford

    Google Scholar 

  • Strzyszcz Z, Magiera T, Heller F (1996) The influence of industrial immisions on the magnetic susceptibility of soils in Upper Silesia. Studia Geophys Geod 40(3):276–286. https://doi.org/10.1007/BF02300743

    Article  Google Scholar 

  • Uličný D, Laurin J, Čech S (2009) Controls on clastic sequence geometries in a shallow-marine, transtensional basin: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 56:1077–1114

    Article  Google Scholar 

  • Waythomas ChF (1991) Magnetic susceptibility of fluvial sediment, Lower Fox River, Northeastern Illinois, and implications for determining sediment source area. Water Resour Investig Rep 91:4013

    Google Scholar 

  • Žák K, Rohovec J, Navrátil T (2009) Fluxes of heavy metals from a highly polluted watershed during flood events: a case study of the Litavka River, Czech Republic. Water Air Soil Pollut 203(1):343–358

    Google Scholar 

Download references

Acknowledgements

This study was supported by Project No. 15-00340S (Grant Agency of the Czech Republic). XRF analyses were performed in the Institute of Inorganic Chemistry ASCR in Řež; here we thank Petr Vorm for sample handling and analyses. Magnetic susceptibility data were obtained in the Department of Geology, Faculty of Science, Palacký University in Olomouc. Special thanks to Ondřej Bábek from the Department of Geology, Faculty of Science, Palacký University in Olomouc for reading the manuscript and providing inspiring comments. We also wish to thank Edward A. Nater, Christoph E. Geiss and Eduard Petrovský for critical comment of earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Faměra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faměra, M., Matys Grygar, T., Elznicová, J. et al. Geochemical normalization of magnetic susceptibility for investigation of floodplain sediments. Environ Earth Sci 77, 189 (2018). https://doi.org/10.1007/s12665-018-7371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7371-0

Keywords

Navigation