Skip to main content
Log in

Distinguishing regional and local sources of pollution by trace metals and magnetic particles in fluvial sediments of the Morava River, Czech Republic

  • SEDIMENTS, SEC 1 • SEDIMENT QUALITY AND IMPACT ASSESSMENT • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Regional contamination of southern Moravia (SE part of the Czech Republic) by trace metals and magnetic particles during the twentieth century was quantified in fluvial sediments of the Morava River. The influence of local pollution sources on regional contamination of the river sediments and the effect of sampling site heterogeneity were studied in sediment profiles with different lithologies.

Materials and methods

Hundreds of sediment samples were obtained from regulated channel banks and naturally inundated floodplains and proxy elemental analyses were carried out by energy dispersive X-ray fluorescence spectroscopy (ED XRF) and further calibrated by inductively coupled plasma mass spectrometry (ICP MS). Magnetic susceptibility was determined as a proxy for industrial contamination. The age model for the floodplain sediments was established from 137Cs and 210Pb dating. Trace metal contamination was assessed by establishing the lithological background values from floodplain profiles and calculating enrichment factors (EF) of trace metals (i.e. Pb, Zn, Cu) and magnetic susceptibility for the entire study area.

Results and discussion

Channel sediments are unsuitable for the reconstruction of historical regional contamination due to their lithological heterogeneity and the “chaotic” influence of local sources of contamination, as well as the possibility of geochemical mobility of pollutants. On the other hand, sediments from regulated river banks qualitatively reflected the actual, local contamination of the river system.

Conclusions

This approach allowed us to distinguish the influence of local sources of contamination by comparison with more spatially averaged contamination signals from distal floodplain profiles. The studied area is weakly contaminated (EF ∼1–2), while individual sediment strata from regulated channel banks reflect local sources of contamination and contain up to several times higher concentrations of trace metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen JRL, Rae JE (1987) Late Flandrian shoreline oscillations in the Severn estuary: A geomorphological and stratigraphical reconnaissance. Philos T R Soc Lon B 315:185–230

    Article  Google Scholar 

  • Babek O, Hilscherova K, Nehyba S, Zeman J, Famera M, Francu J, Holoubek I, Machat J, Klanova J (2008) Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. J Soils Sediments 8:165–176

    Article  CAS  Google Scholar 

  • Bird G (2011) Provenancing anthropogenic Pb within the fluvial environment: developments and challenges in the use of Pb isotopes. Environ Intern 37:802–819

    Article  CAS  Google Scholar 

  • Brazdil R, Macka Z, Reznickova L, Soukalova E, Dobrovolny P, Matys Grygar T (2011) Floods and floodplain changes of the River Morava, the Straznicke Pomoravi region (Czech Republic) over the past 130 years. Hydrolog Sci J 56:1166–1185

    Article  Google Scholar 

  • Cappuyns V, Swennen R (2004) Secondary mobilisation of heavy metals in overbank sediments. J Environ Monitor 6:434–440

    Article  CAS  Google Scholar 

  • Ciszewski (2003) Heavy metals in vertical profiles of the middle Odra River overbank sediments: Evidence for pollution changes. Water Air Soil Poll 143:81–98

    Article  CAS  Google Scholar 

  • Ciszewski D, Malik I (2004) The use of heavy metal concentrations and dendrochronology in the reconstruction of sediment accumulation, Mala Panew River Valley, southern Poland. Geomorphology 58:161–174

    Article  Google Scholar 

  • Ciszewski D, Czajka A, Błażej S (2008) Rapid migration of heavy metals and 137Cs in alluvial sediments, Upper Odra River valley, Poland. Environ Geol 55:1577–1586

    Article  CAS  Google Scholar 

  • Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30:34–45

    Article  CAS  Google Scholar 

  • Czimerova A, Bujdak J, Dohrmann R (2006) Traditional and novel methods for estimating the layer charge of smectites. Appl Clay Sci 34:2–13

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Diaz-Fierros F, Barral M (2009) Normalization strategies for river bed sediments: a graphical approach. Microchem J 91:253–265

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Diaz-Fierros F, Barral MT (2010) Trace metals in river bed sediments: An assessment of their partitioning and bioavailability by using multivariate exploratory analysis. J Environ Manage 91:2471–2477

    Article  CAS  Google Scholar 

  • Du Laing G, Meers E, Dewispelaere M, Rinklebe J, Vandecasteele B, Verloo MG, Tack FMG (2009) Effect of water table level on metal mobility at different depths in wetland soils of the Scheldt Estuary (Belgium). Water Air Soil Poll 202:353–367

    Article  CAS  Google Scholar 

  • Du P, Walling DE (2012) Using (210)Pb measurements to estimate sedimentation rates on river floodplains. J Environ Radioactiv 103:59–75

    Article  CAS  Google Scholar 

  • Erkens G, Dambeck R, Volleberg KP, Bouman M, Bos JAA, Cohen KM, Wallinga J, Hoek WZ (2009) Fluvial terrace formation in the northern Upper Rhine Graben during the last 20 000 years as a result of allogenic controls and autogenic evolution. Geomorphology 103:476–495

    Article  Google Scholar 

  • Ettler V, Mihaljevič M, Komárek M (2004) ICP-MS measurements of lead isotopic ratios in soils heavily contaminated by lead smelting: tracing the sources of pollution. Anal Bioanal Chem 378:311–317

    Article  CAS  Google Scholar 

  • Foster IDL, Lees JA, Owens PN, Walling DE (1998) Mineral magnetic characterization of sediment sources from an analysis of lake and floodplain sediments in the catchments of the Old Mill Reservoir and Slapton Ley, South Devon, UK. Earth Surf Proc Land 23:685–703

    Article  CAS  Google Scholar 

  • Grygar T, Světlík I, Lisá L, Koptíková L, Bajer A, Wray DS, Ettler V, Mihaljevič M, Nováková T, Koubová M, Novák J, Máčka Z, Smetana M (2010) Geochemical tools for the stratigraphic correlation of floodplain deposits of the Morava River in Strážnické Pomoraví, Czech Republic from the last millennium. Catena 80:106–121

    Article  Google Scholar 

  • Hoffmann T, Erkens G, Gerlach R, Klostermann J, Lang A (2009) Trends and controls of Holocene floodplain sedimentation in the Rhine catchment. Catena 77:96–106

    Article  CAS  Google Scholar 

  • Hudson-Edwards KA, Macklin MG, Curtis CD, Vaughan DJ (1998) Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: Implications for dating and chemostratigraphy. Earth Surf Proc Land 23:671–684

    Article  CAS  Google Scholar 

  • Kadlec J, Grygar T, Světlík I, Ettler V, Mihaljevič M, Diehl JF, Beske-Diehl S, Svitavská-Svobodová H (2009) Morava River floodplain development during the last millennium, Strážnické Pomoraví, Czech Republic. Holocene 19:499–509

    Article  Google Scholar 

  • Komarek M, Ettler V, Chrastny V, Mihaljevic M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577

    Article  CAS  Google Scholar 

  • Knab M, Hoffmann V, Petrovsky E, Kapicka A, Jordanova N, Appel E (2006) Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility. Environ Geol 49:527–535

    Article  CAS  Google Scholar 

  • Liu WX, Li XD, Shen ZG, Wang DC, Wai OWH, Li YS (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ Pollut 121:377–388

    Article  CAS  Google Scholar 

  • Lokas E, Wachniew P, Ciszewski D, Owczarek P, Chau ND (2010) Simultaneous use of trace metals, Pb-210 and Cs-137 in floodplain sediments of a lowland river as indicators of anthropogenic impacts. Water Air Soil Poll 207:57–71

    Article  CAS  Google Scholar 

  • Macklin MG, Ridgway J, Passmore DG, Rumsby BT (1994) The use of overbank sediment for geochemical mapping and contamination assessment - Results from selected English and Welsh floodplains. Appl Geochem 9:689–700

    Article  CAS  Google Scholar 

  • Macklin MG, Lewin J (2008) Alluvial responses to the changing Earth system. Earth Surf Proc Land 33:1374–1395

    Article  Google Scholar 

  • Martin CW (1997) Heavy metal concentrations in floodplain surface soils, Lahn River, Germany. Environ Geol 30:119–125

    Article  CAS  Google Scholar 

  • Matys Grygar T, Nováková T, Mihaljevič M, Strnad L, Světlík I, Koptíková L, Lisá L, Brázdil R, Máčka Z, Stachoň Z, Svitavská-Svobodová H, Wray DS (2011) Surprisingly small increase of the sedimentation rate in the floodplain of Morava River in the Strážnice area, Czech Republic, in the last 1300 years. Catena 86:192–207

    Article  Google Scholar 

  • Matys Grygar T, Sedlacek J, Babek O, Novakova T, Strnad L, Mihaljevic M (2012) Regional contamination of Moravia (South-Eastern Czech Republic): temporal shift of Pb and Zn loading in fluvial sediments. Water Air Soil Poll 223:739–753

    Article  CAS  Google Scholar 

  • Medek J (2011) Problematika říčních sedimentů – odběry, analýzy, hodnocení. In: Analytika odpadů, Ekomonitor, Hradec Králové, pp 106–111

  • Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clay Clay Miner 47:386–388

    Article  CAS  Google Scholar 

  • Miall AD (1996) The Geology of Fluvial Deposits. Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer-Verlag, Berlin, ISBN 3 540 59186 9

    Google Scholar 

  • Middelkoop H (2000) Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Geol Mijnbouw-N J G 79:411–428

    Google Scholar 

  • Middelkoop H (2002) Reconstructing floodplain sedimentation rates from heavy metal profiles by inverse modelling. Hydrol Process 16:47–64

    Article  Google Scholar 

  • Mihaljvic M, Ettler V, Strnad L, Sebek O, Vonasek F, Drahota P, Rohovec J (2009) Isotopic composition of lead in Czech coals. Int J Coal Geol 78:38–46

    Article  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geojournal 2:108–118

    Google Scholar 

  • Murad E, Fischer WR (1978) Mineralogy and heavy metal contents of soils and stream sediments in a rural region of Western Germany. Geoderma 21:133–145

    Article  CAS  Google Scholar 

  • Newman BK, Watling RJ (2007) Definition of baseline metal concentrations for assessing metal enrichment of sediment from the south-eastern Cape coastline of South Africa. Water Sa 33:675–691

    CAS  Google Scholar 

  • Novakova T (2009) Geochemické a izotopové datování recentních povodňových sedimentů řeky Moravy (Geochemical and Isotopical Dating of Recent Flood Sediments of the Morava River). Diploma Thesis, Charles University in Prague

  • Orescanin V, Lulić S, Pavlović G, Mikelić L (2004) Granulometric and chemical composition of the Sava River sediments upstream and downstream of the Krsko nuclear power plant. Environ Geol 46:605–613

    Article  CAS  Google Scholar 

  • Owens PN, Walling DE (2003) Temporal changes in the metal and phosphorus content of suspended sediment transported by Yorkshire rivers, U.K. over the last 100 years, as recorded by overbank floodplain deposits. Hydrobiologia 494:185–191

    Article  CAS  Google Scholar 

  • Reimann C, De Caritat P (2000) Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol 34:5084–5091

    Article  CAS  Google Scholar 

  • Reimann C, Garrett RG (2005) Geochemical background - concept and reality. Sci Total Environ 350:12–27

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337:91–107

    Article  CAS  Google Scholar 

  • Ridgway J, Flight DMA, Martiny B, Gomezcaballero A, Maciasromo C, Greally K (1995) Overbank sediments from central Mexico - An evaluation of their use in regional geochemical mapping and studies of contamination from modern and historical mining. Appl Geochem 10:97–109

    Article  CAS  Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    Article  CAS  Google Scholar 

  • Rumsby B (2000) Vertical accretion rates in fluvial systems: A comparison of volumetric and depth-based estimates. Earth Surf Process Landforms 25:617–631

    Article  Google Scholar 

  • Saint-Laurent D, Lavoie L, Drouin A, St-Laurent J, Ghaleb B (2010) Floodplain sedimentation rates, soil properties and recent flood history in southern Quebec. Glob Planet Chang 70:76–91

    Article  Google Scholar 

  • Stamm MH (1999) The dating of fluvial deposits with heavy metals, Pb-210 Cs-137 in the Geul catchment (The Netherlands). Phys Chem Earth B 24:155–160

    Article  Google Scholar 

  • Sucharova J, Suchara I, Hola M, Marikova S, Reimann C, Boyd R, Filzmoser P, Englmaier P (2012) Top-/bottom-soil ratios and enrichment factors: What do they really show? Appl Geochem 27:138–145

    Article  CAS  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  • Swennen R, Van der Sluys J (1998) Zn, Pb, Cu and As distribution patterns in overbank and medium-order stream sediment samples: their use in exploration and environmental geochemistry. J Geochem Explor 65:27–45

    Article  CAS  Google Scholar 

  • Swennen R, Van Der Sluys J (2002) Anthropogenic impact on sediment composition and geochemistry in vertical overbank profiles of river alluvium from Belgium and Luxembourg. J Geochem Explor 75:93–105

    Article  CAS  Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285

    Article  CAS  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earths crust. Geol Soc Amer Bull 72:175–191

    Article  CAS  Google Scholar 

  • Vijver MG, Spijker J, Vink JPM, Posthuma L (2008) Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modelling. Environ Pollut 156:832–839

    Article  CAS  Google Scholar 

  • Wang ZG, Darilek JL, Zhao YC, Huang BA, Sun WX (2011) Defining soil geochemical baselines at small scales using geochemical common factors and soil organic matter as normalizers. J Soils Sediments 11:3–14

    Article  CAS  Google Scholar 

  • Zalasiewicz J, Williams M, Fortey R, Smith A, Barry TL, Coe AL, Brown PR, Rawson PF, Gale A, Gibbard P, Gregory FJ, Hounslow MW, Kerr AC, Pearson P, Knox R, Powell J, Waters C, Marshall J, Oates M, Stone P (2011) Stratigraphy of the Anthropocene. Phil Trans Royal Soc A 369:1036–1055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mark G. Macklin (Aberystwyth University, Wales) and Marcel van der Perk and Hans Middelkoop (Utrecht University, The Netherlands) for fruitful discussion on the concept of the Anthropocene in the fluvial sediment domain. Work related to the Morava River watershed and also 210Pb, 137Cs, ICP MS, ED XRF and MS analyses were funded by GA UK project 46210 and by project MSM 0021620855. Work related to the profiles from regulated river banks near Otrokovice were provided thanks to MSM0021622412 (INCHEMBIOL). ED XRF analyses of samples and data interpretation were provided thanks to research project RVO 61388980 at the Institute of Inorganic Chemistry AS CR, Rez, where many hundreds of samples have also been processed in analytical laboratory by J. Dörflová, Z. Hájková and P. Vorm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tereza Novakova.

Additional information

Responsible editor: Marcel van der Perk

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novakova, T., Grygar, T.M., Babek, O. et al. Distinguishing regional and local sources of pollution by trace metals and magnetic particles in fluvial sediments of the Morava River, Czech Republic. J Soils Sediments 13, 460–473 (2013). https://doi.org/10.1007/s11368-012-0632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-012-0632-8

Keywords

Navigation