Skip to main content
Log in

Geoelectrical mapping for improved performance of SUDS in clay tills

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Many cities of the Northern Hemisphere are covered by low permeable clay tills, posing a challenge for stormwater infiltration practices. However, clay tills range amongst the most heterogeneous types of sediments and infiltration rates can vary by several orders of magnitude. This study evaluates if a 2D geoelectrical system can reveal such heterogeneity at field scale and thus be used to optimize the hydraulic performance of stormwater runoff infiltration systems. The assessment is based on a field study where data from non-invasive geoelectrical data are compared with data from invasive geological methods, including borehole soil sample descriptions, one excavation description and a near-surface spear auger-mapping project. The experiments returned a significant correlation of geoelectrical and spear auger-mapped surface sediments. Furthermore, a highly permeable oxidized fracture zone in greater depths could be revealed on the 2D geoelectrical profiles. The successful determination of highly permeable zones harbors potential for improved hydraulic performance of infiltration SUDS (sustainable urban drainage systems).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Eng 146:54–62

    Google Scholar 

  • Bentley LR, Gharibi M (2004) Two- and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics 69:674–680

    Article  Google Scholar 

  • Bockhorn B, Klint KES, Jensen MB (2014) Stormwater management: Method for measuring near-surface infiltration capacity in clayey till. Review of survey activities 2013. Geol Surv Denm Greenl Bull 2013:47–50

    Google Scholar 

  • Boudreault JP, Chouteau M, Winiarski T, Hardy É (2010) Geophysical characterization of contaminated urban fills. Eng Geol 116:196–206

    Article  Google Scholar 

  • Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. HydrogeolJ 10(1):121–142

    Article  Google Scholar 

  • Busby JP (2000) The effectiveness of azimuthal apparent-resistivity measurements as a method for determining fracture strike orientations. Geophys Prospect 48:677–695

    Article  Google Scholar 

  • Christiansen AV, Auken E (2012) A global measure for depth of investigation. Geophysics 77(4):171–177

    Article  Google Scholar 

  • Dahlin T (1996) 2D resistivity surveying for environmental and engineering applications. First Break 14:275–283

    Article  Google Scholar 

  • Dahlin T, Loke MH (1998) Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. J Appl Geophys 38:237–249

    Article  Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52(5):379–398

    Article  Google Scholar 

  • Dahlin T, Zhou B (2006) Multiple-gradient array measurements for multichannel 2D resistivity imaging. Near Surface Geophy 4:113–123

    Google Scholar 

  • Dearden RA, Marchant A, Royse K (2013) Development of a suitability map for infiltration sustainable drainage systems (SuDS). Environ Earth Sci 70(6):2587–2602

    Article  Google Scholar 

  • DeLima OAL, Sharma MM (1990) A grain conductivity approach to shaley sandstones. Geophysics 55:1347–1356

    Article  Google Scholar 

  • Doolittle JA, Brevik EC (2014) The use of electromagnetic induction techniques in soil studies. Geoderma 223–225:33–45

    Article  Google Scholar 

  • Fiandaca G, Ramm J, Binley A, Gazoty A, Christiansen AV, Auken E (2013) Resolving spectral information from time domain induced polarization data through 2-D inversion. Geophy J Int 192:631–646

    Article  Google Scholar 

  • Fredericia J (1990) Saturated hydraulic conductivity of clay tills and the role of fractures. Nord Hydrol 21:119–132

    Google Scholar 

  • Goutaland D, Winiarski T, Dubé JS, Bièvre G, Buoncristiani JF, Chouteau M, Giroux B (2008) Hydrogeophysical study of the heterogeneous unsaturated zone of a storm water infiltration basin. Vadose Zone J 7(1):194–207

    Article  Google Scholar 

  • Haefner RJ (2000) Characterization methods for fractured glacial tills. Ohio J Sci 100(3/4):73–87

    Google Scholar 

  • Harrar W, Murdoch LC, Nilsson B, Klint KES (2007) Field characterization of vertical bromide transport in a fractured glacial till. Hydrogeol J 15:1473–1488

    Article  Google Scholar 

  • Harrison B, Sudicky EA, Cherry JA (1992) Numerical analysis of solute migration through fractured clay deposits into underlying aquifers. Water Resour Res 28(2):515–526

    Article  Google Scholar 

  • Henderson RJ (1992) Urban geophysics—a review. Explor Geophys 23:531–542

    Article  Google Scholar 

  • Hendry MJ (1982) Hydraulic conductivity of a glacial till in Alberta. Ground Water 20(2):162–169

    Article  Google Scholar 

  • Hinsby K, McKay LD, Jørgensen PR, Lenczewski M, Gerba CP (1996) Fracture aperture measurements and migration of solutes, and immiscible creosote in a column of clay-rich till. Ground Water 34(6):1065–1075

    Article  Google Scholar 

  • Houmark-Nielsen M (1989) A lithostratigraphy of Weichselian glacial and interstadial deposits in Denmark. Bull Geol Soc Den 46:101–114

    Google Scholar 

  • Hoyer J, Dickhaut W, Kronawitter L, Weber B (2011) The idea of water sensitive urban design and sustainable stormwater management. In: water sensitive urban design. Principles and inspiration for sustainable stormater management in the city of the future. jovis Verlag GmbH, pp 21–28

  • Jørgensen PR, McKay LD, Spliid NH (1998) Evaluation of chloride and pesticide transport in a fractured clay till using large undisturbed columns and numerical modeling. Water Resour Res 34(4):539–553

    Article  Google Scholar 

  • Jørgensen F, Sandersen PBE, Auken E, Lykke-Andersen H, Sørensen K (2005) Contributions to the geological mapping of Mors, Denmark—a study based on a large-scale TEM survey. Bull Geol Soc Den 52(1):53–75

    Google Scholar 

  • Kessler TC, Klint KES, Nilsson B, Bjerg PL (2012) Characterization of sand lenses embedded in tills. Quatern Sci Rev 53:55–71

    Article  Google Scholar 

  • Klint KES (1996) Fractures and Depositional Features of the St. Joseph Till and upper part of the Black Shale Till at the Laidlaw site, Lambton County, Ontario. GEUS Geol Surv Denm Greenl Rep 1996(9):39

    Google Scholar 

  • Klint KES (2001) Fractures in Glacigene Diamict deposits; Origin and Distribution. Dissertation, Geological Survey of Denmark and Greenland, Denmark

  • Klint KES, Gravesen P (1999) Fractures and biopores in Weichselian clay till aquitards at Flakkebjerg, Denmark. Nord Hydrol. 30(4/5):267–284

    Google Scholar 

  • Klint KES, Abildtrup CA, Gravesen P, Jakobsen PR, Vosgerau H (2001) Sprækkers oprindelse og udbredelse i moræneler i Danmark. Vand og Jord 8(3):111–119

    Google Scholar 

  • Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162

    Article  Google Scholar 

  • Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Article  Google Scholar 

  • Martin C, Ruperd Y, Legret M (2007) Urban storm water drainage management: The development of a multicriteria decision aid approach for best management practices. Eur J Oper Res 181:338–349

    Article  Google Scholar 

  • Martorana R, Fiandaca G, Casas Ponsati A, Cosentino PL (2009) Comparative tests on different multi-electrode arrays using models in near-surface geophysics. J Geophys Eng 6:1–20

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media, 2nd edn. Cambridge University Press, p 522

  • Musa S, Zakaria NA, Lai SH, Tjahjanto D (2010) The drainage exchange of storm water potential in flat area problems. J Environ Sci Eng 4(10):1–8

    Google Scholar 

  • Naudet V, Gourry JC, Girard F, Mathieu F, Saada A (2014) 3D electrical resistivity tomography to locate DNAPL contamination around a housing estate. Near Surf Geoph 12:351–360

    Google Scholar 

  • Oldenburg DW, Li Y (1994) Inversion of induced polarization data. Geophysics 59(9):1327–1341

    Article  Google Scholar 

  • Panissod C, Dabas M, Jolivet A, Tabbagh A (1997) A novel mobile multipole system (MUCEP) for shallow (0–3 m) geoelectrical investigation: the ‘Vol-de-canards’ array. Geophy Prospect 45(6):983–1002

    Article  Google Scholar 

  • Papadopoulos N, Sarris A, Yi MJ, Kim JH (2009) Urban archaeological investigations using surface 3D ground penetrating radar and electrical resistivity tomography methods. Expl Geoph Butsuri Tansa 62:56–68 (Mulli-Tamsa, 12:56–68)

    Article  Google Scholar 

  • Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surv Geophys 23:101–132

    Article  Google Scholar 

  • Pozdnyakova L, Pozdnyakov A, Zhang R (2001) Application of geophysical methods to evaluate hydrology and soil properties in urban areas. Urban Water 3:205–216

    Article  Google Scholar 

  • Rasmussen LH, Ernststen V, Hansen HCB (2001) Redoximorphic macropore environments in an Agrudalf. Nord Hydrol 32(4–5):333–352

    Google Scholar 

  • Revil A, Karaoulis M, Johnson T, Kemna A (2012) Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20:617–658

    Article  Google Scholar 

  • Reynolds JM (2004) Environmental geophysics investigations in urban areas. First Break 22:63–69

    Google Scholar 

  • Riddersholm P, Cappelen J (2011) Vejret I Danmark–sommer 2011. Danish Meterological Institute (DMI). http://www.dmi.dk/vejr/arkiver/maanedsaesonaar/sommer2011/. Accessed 30 March 2015

  • Roe J, Triantafilis J, Santos FM (2010) Detecting a landfill leachate plume using a DUALEM-421 and a laterally constrained inversion model. In: 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 38, 1–6 Aug 2010, Brisbane, Australia. Published on DVD

  • Ruland WW, Cherry JA, Feenstra S (1991) The depth of fractures and active ground-water flow in a clay till plain in Southernwestern Ontario. Ground Water 29(3):405–417

    Article  Google Scholar 

  • Russell EJF, Barker RD (2010) Electrical properties of clay in relation to moisture loss. Near Surface Geophysics 8:173–180

    Article  Google Scholar 

  • Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil and Tillage Research 83(2):73–193

    Article  Google Scholar 

  • Sidle RC, Nilsson B, Hansen M, Fredericia J (1998) Spatially varying hydraulic and solute transport characteristics of a fracture till determined by field tracer test, Funen. Denmark. Water Resour Res 34(10):2515–2527

    Article  Google Scholar 

  • Slater L (2007) Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries—A Review. Surv Geophys 28:169–197

    Article  Google Scholar 

  • Sørensen KI (1996) Pulled Array Continuous Electrical Profiling. First Break 14(3):85–90

    Google Scholar 

  • Szalai S, Novak A, Szarka L (2011) Which geoelectric array sees the deepest in a noisy environment? Depth of detectability values of multielectrode systems for various two-dimensional models. Physics and Chemistry of the Earth, Parts A/B/C no. 36:1398–1404. doi:10.1016/j.pce.2011.01.008

    Article  Google Scholar 

  • Triantafilis J, Santos FAM (2013) Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil). Geoderma 211–212:28–38

    Article  Google Scholar 

  • Triantafilis J, Roe JAE, Monteiro Santos FA (2011) Detecting a leachate-plume in an aeolian sand landscape using a DUALEM-421 induction probe to measure electrical conductivity followed by inversion modelling. Soil Use Manag 27:357–366

    Google Scholar 

  • Van Overmereen R, Ritsema IL (1988) Continuous vertical electrical sounding. First Break 6:313–324

    Google Scholar 

  • Vaudelet P, Schmutz M, Pessel M, Franceschi M, Guérin R, Atteia O, Blondel A, Ngomseu C, Galaup S, Rejiba F, Bégassat P (2011) Mapping of contaminant plumes with geoelectrical methods. A case study in urban context. J Appl Geophys 75:738–751

    Article  Google Scholar 

Download references

Acknowledgments

The work was conducted as part of the innovation consortium Cities in Waterbalance (Byer i Vandbalance) financed by the Council for Technology and Innovation in Denmark. The authors would like to thank the reviewer Anna Gabàs for her valuable comments that have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Bockhorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bockhorn, B., Møller, I., Klint, K.E.S. et al. Geoelectrical mapping for improved performance of SUDS in clay tills. Environ Earth Sci 74, 5263–5273 (2015). https://doi.org/10.1007/s12665-015-4535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4535-z

Keywords

Navigation