Skip to main content

Advertisement

Log in

Stream flow composition and sediment yield comparison between partially urbanized and undisturbed coastal watersheds—case study: St. John, US Virgin Islands

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In steep dry-tropical islands, rural and urban development can lead to accelerated soil erosion and the delivery of land-based materials into marine ecosystems. The objective of this paper was to compare stream water composition, clay minerology, and sediment yield between a partially urbanized (Coral Bay) and an undisturbed (Lameshur) coastal watersheds in St. John, US Virgin Islands (USVI). The saturation index of streamflow water samples was calculated using “The Geochemist’s Workbench” software and most likely precipitated minerals from observed storm events was then compared with X-ray diffraction on soil clay mineralogy. The spatial distribution on both annual mean (2010) erosion rates and storm event–wise (Hurricane Otto) sediment yield among the two study watersheds were modeled using the revised and modified universal soil loss equations (RUSLE; MUSLE), respectively. Cations concentration in stream flow water samples and sediment yield were higher for the partially urbanized (Coral Bay) compared to the undisturbed (Lameshur) watershed. Our findings suggest that rural/urban development may increase stream water cations concentration and inputs of sediment to downstream ecosystems. Future studies evaluating the effect of management practices such as pavement or other stabilization of dirt roads and their impact on stream water quality and quantity and sediment yield are crucial for the proper sediment management in the study watersheds and potentially in other rural-urbanizing tropical watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, D. M., & MacDonald, L. H. (1998). Modeling road surface sediment production using a vector geographic information system. Earth Surface Processes and Landforms, 23, 95–107. https://doi.org/10.1002/(SICI)1096-9837(199802)23:2<95::AID-ESP849>3.0.CO;2-1.

    Article  Google Scholar 

  • Bethke, C. M. (1996). Geochemical Reaction Modeling. USA: Oxford university press.

    Google Scholar 

  • Brevik, E. C., Cerdá, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of SOIL. SOIL, 1, 117–129. https://doi.org/10.5194/soil-1-117-2015.

    Article  Google Scholar 

  • Brooks, G. R., Devine, B., Larson, R. A., & Rood, B. P. (2007). Sedimentary development of Coral Bay, St. John, USVI: a shift from natural to anthropogenic influences. Caribbean Journal of Science, 43, 226–243. https://doi.org/10.18475/cjos.v43i2.a8.

    Article  Google Scholar 

  • Chadwick, O. A., & Chorover, J. (2001). The chemistry of pedogenic tresholds. Geoderma, 100, 321–353. https://doi.org/10.1016/S0016-7061(01)00027-1.

    Article  CAS  Google Scholar 

  • Chen, T., Niu, R., Wang, Y., Li, P., Zhang, L., & Du, B. (2011). Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques. Environmental Monitoring and Assessment, 179, 605–617. https://doi.org/10.1007/s10661-010-1766-z.

    Article  Google Scholar 

  • Dunne, T., & Leopold, L. B. (1987). Water in Environmental Planning (p. 818). New York: W.H. Freeman and Company ISBN 0-71670079-4.

    Google Scholar 

  • Erns, W. G. (2000). Earth Systems: Processes and Issues. UK: Cambridge University Press.

    Google Scholar 

  • Fabricius, K. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028.

    Article  CAS  Google Scholar 

  • Garcia-Ruiz, J. M. (2010). The effects of land uses on soil erosion in Spain: a review. Catena, 81, 1–11. https://doi.org/10.1016/j.catena.2010.01.001.

    Article  Google Scholar 

  • Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean Corals. Science, 301(5635), 958–960. https://doi.org/10.1126/science.1086050.

    Article  CAS  Google Scholar 

  • Gray, S.C., Gobbi, K.L., & Narwold, P.V. (2008). Comparison of Sedimentation in Bays and Reefs below Developed versus Undeveloped Watersheds on St. John, US Virgin Islands. 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 7-11 July 2008 Session number 20.

  • Gray SC, Sears WT, Kolupski DeGrood AM, & Fox MD (2012) Factors affecting land-based sedimentation in coastal bays, US Virgin Islands. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia July 9th-13th, 2012.

  • Gudiño Elizondo, N. (2012). Erosión e intemperismo en las cuencas Coral Bay y Lameshur, Isla Saint John de Islas Vírgenes, EUA. Master Degree Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada, México.

  • Gudino-Elizondo, N., Biggs, T., Bingner, R. L., Yuan, Y., Langendoen, E., Taniguchi, K., Kretzschmar, T., Taguas, E. V., & Liden, D. (2018a). Modelling ephemeral gully erosion from unpaved urban roads: Equifinality and implications for scenario analysis. Geosciences, 8, 137. https://doi.org/10.3390/geosciences8040137.

    Article  Google Scholar 

  • Gudino-Elizondo, N., Biggs, T., Castillo, C., Bingner, R. L., Langendoen, E., Taniguchi, K., Kretzschmar, T., Yuan, Y., & Liden, D. (2018b). Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques. Land Degradation & Development, 29, 1896–1905. https://doi.org/10.1002/ldr.2976.

    Article  Google Scholar 

  • Gudino-Elizondo, N., Biggs, T., Bingner, R. L., Langendoen, E., Kretzschmar, T., Taguas, E. V., Taniguchi, K., Liden, D., & Yuan, Y. (2019). Modelling runoff and sediment loads in a developing coastal watershed of the US-Mexico Border. Water, 2019(11), 1024. https://doi.org/10.3390/w11051024.

    Article  Google Scholar 

  • Harden, C. P. (2001). Soil erosion and sustainable mountain development. Mountain Research and Development, 21(1), 77–83. https://doi.org/10.1659/0276-4741(2001)021[0077:SEASMD]2.0.CO;2.

    Article  Google Scholar 

  • Henry, A., Mabit, L., Jaramillo, R. E., Cartagena, Y., & Lynch, J. P. (2013). Land use effects on erosion and carbon storage of the Rio Chimbo watershed, Ecuador. Plant Soil, 367, 477–491.

    Article  CAS  Google Scholar 

  • Holland, H. D. (1978). The Chemistry of the Atmosphere and Oceans. New York: Wiley.

    Google Scholar 

  • Hontoria, C., Rodriguez-Murillo, J. C., & Saa, A. (1999). Relationships between soil organic carbon and site characteristics in Peninsular Spain. Soil Science Society of America Journal., 63, 614–621. https://doi.org/10.2136/sssaj1999.03615995006300030026x.

    Article  CAS  Google Scholar 

  • Hubbard, D.K., Stump, J.D., & Carter, B. (1987). Sedimentation and reef development is Hawksnest, Fish and Reef Bays, St. John, U.S. Virgin Islands. Virgin Islands Resource Management Cooperative. Biosphere Reserve Research Report No 21.

  • Jenny, H. (1961). Derivation of state factor equations of soils and ecosystems. Soil Science Society of America Journal, 25, 385–388. https://doi.org/10.2136/sssaj1961.03615995002500050023x.

    Article  Google Scholar 

  • Keesstra, S. D., Geissen, V., Van Schaik, L., Mosse, K., & Piiranen, S. (2012). Soil as a filter for groundwater quality. Current Opinions in Environmental Sustainability, 4, 507–516. https://doi.org/10.1016/j.cosust.2012.10.007.

    Article  Google Scholar 

  • Kinnell, P. (2005). Why the universal soil loss equation and the revised version of it do not predict event erosion well. Hydrological Process, 19, 851–854. https://doi.org/10.1002/hyp.5816.

    Article  Google Scholar 

  • Kolupski, M. (2011). Sedimentation in coastal bays with coral reefs: impacts of watershed development, Saint John, USVI. Master Degree Thesis, University of San Diego, USA.

  • LAStools - Efficient tools for LiDAR processing. Version 111216, Martin Isenburg 2011. http://rapidlasso.com/LAStools [accessed on June 2016].

  • MacDonald, L. H., Anderson, D. M., & Dietrich, W. E. (1997). Paradise threatened: land use and erosion on St. John, US Virgin Islands. Environmental Management, 21(6), 851–863.

    Article  CAS  Google Scholar 

  • MacDonald, L. H., Sampson, R. W., & Anderson, D. M. (2001). Runoff and road erosion at the plot and road segment scales, St. John, US Virgin Islands. Earth Surface Processes and Landforms., 26, 251–272. https://doi.org/10.1002/1096-9837(200103)26:3<251::AID-ESP173>3.0.CO;2-X.

    Article  Google Scholar 

  • Martinez-Mena, M., Lopez, J., Almagro, M., Boix-Fayos, C., & Albaladejo, J. (2008). Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of South-East Spain. Soil and Tillage Research, 99, 119–129. https://doi.org/10.1016/j.still.2008.01.009.

    Article  Google Scholar 

  • McCreery, H.F. (2007). “The effect of Anthropogenic Development on Sediment Loading to Bays on St. John, U.S. Virgin Islands, Master Degree Thesis. Massachusetts Institute of Technology, USA.

  • McHugh, M. (2007). Short-term changes in upland soil erosion in England and Wales: 1999 to 2002. Geomorphology, 86(1-2), 204–213. https://doi.org/10.1016/j.geomorph.2006.06.010.

    Article  Google Scholar 

  • Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(2), 109–129. https://doi.org/10.1016/S0341-8162(99)00067-3.

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C., Jr. (1996). X-ray diffraction and the identification of clay minerals. New York: Oxford University of Press.

    Google Scholar 

  • National Center for Environmental Information. NOAA, 2011. http://data.nodc.noaa.gov/coris/data/NOAA/nos/Summit2Sea/USVirginIslands/. Accessed 15 July 2011.

  • Oliver, L. M., Fisher, W. S., Fore, L., Smith, A., & Bradley, P. (2018). Assessing land use, sedimentation, and water quality stressors as predictors of coral reef condition in St. Thomas, U.S. Virgin Islands. Environmental Monitoring and Assessment, 190, 213. https://doi.org/10.1007/s10661-018-6562-1.

    Article  CAS  Google Scholar 

  • Pait, A. S., Galdo, F. R., Jr., Hartwell, S. I., Apeti, D. A., & Mason, A. L. (2018). An assessment of nutrients and sedimentation in the St. Thomas East End Reserves, US Virgin Islands. Environmental Monitoring and Assessment, 190, 270. https://doi.org/10.1007/s10661-018-6628-0.

    Article  CAS  Google Scholar 

  • Radke, J. D. (1997). Detecting potential erosion threats to the coastal zone: St. John, USVI. International Journal of Marine Geodesy, 20, 235–254. https://doi.org/10.1080/01490419709388107.

    Article  Google Scholar 

  • Ramos-Scharron, C. E. (2012). Effectiveness of drainage improvements in reducing sediment production rates from an unpaved road. Journal of Soil and Water Conservation, 67(2), 87–100. https://doi.org/10.2489/jswc.67.2.87.

    Article  Google Scholar 

  • Ramos-Scharron, C. E. (2018). Land disturbance effects of roads in runoff and sediment production on dry-tropical, settings. Geoderma, 310, 107–119. https://doi.org/10.1016/j.geoderma.2017.08.035.

    Article  Google Scholar 

  • Ramos-Scharron, C. E., & LaFevor, M. C. (2016). The role of unpaved roads as active source areas of precipitation excess in small watersheds drained by ephemeral streams in the Northeastern Caribbean. Journal of Hydrology, 533, 168–179. https://doi.org/10.1016/j.jhydrol.2015.11.051.

    Article  Google Scholar 

  • Ramos-Scharron, C. E., & MacDonald, L. H. (2005). Measurement and prediction of sediment production from unpaved roads, St John, US Virgin Islands. Earth Surface Process and Landforms, 30, 1283–1304. https://doi.org/10.1002/esp.1201.

    Article  Google Scholar 

  • Ramos-Scharron, C. E., & MacDonald, L. H. (2007a). Runoff and suspended sediment yields from an unpaved road segment. Hydrological Processes, 21, 35–50. https://doi.org/10.1002/hyp.6175.

    Article  Google Scholar 

  • Ramos-Scharron, C. E., & MacDonald, L. H. (2007b). Development and application of a GIS-based sediment budget model. Journal of Environmental Management, 84, 157–172. https://doi.org/10.1016/j.jenvman.2006.05.019.

    Article  Google Scholar 

  • Rankin, D.W. (2002). Geology of St. John, U.S. Virgin Islands. U.S. Geological Survey Professional Paper 1631. U.S. Department of Interior, U.S. Geological Survey.

  • Rawlins, B. G., Ferguson, A. J., Chilton, P. J., Arthurton, R. S., & Rees, J. G. (1998). Review of agricultural pollution in the caribbean with particular emphasis on small island developing states. Marine Pollution Bulletin., 36, 658–668. https://doi.org/10.1016/S0025-326X(98)00054-X.

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1996). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Handbook Number 703. Washington, D.C., USA: USDA.

    Google Scholar 

  • Rogers, C. (1990). Responses of coral reefs and reef organisms to sedimentation. MARINE ECOLOGY PROGRESS SERIES. Vol., 62, 185–202.

    Article  Google Scholar 

  • Rogers, C.S., & Teytaud, R. (1988). Marine and terrestrial ecosystems of the Virgin Island National Park and biosphere reserve. U.S. Department of Interior. Biosphere reserve report No. 29.

  • Snider, D. (1972). National engineering handbook; section 4: Hydrology; chapter 16: Hydrographs Natural Resources Conservation Service.

  • Trimble, S. W., & Crosson, P. (2000). U.S. soil erosion rates: myth and reality. Science, 289(5477), 248–250. https://doi.org/10.1126/science.289.5477.248.

    Article  CAS  Google Scholar 

  • U.S. Department of Agriculture (1986). Natural Resources Conservation Service. Urban Hydrology for Small Watersheds, TR55. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf. Accessed 15 March 2017.

  • Wemple, B. C., Browning, T., Ziegler, A. D., Celi, J., Chun, K. P., Jaramillo, F., Leite, N., Ramchunder, S. J., Negishi, J. N., Palomeque, X., & Sawyer, D. (2017). Ecohydrological disturbances associated with roads: Current knowledge, research needs, and management concerns with reference to the Tropics. Ecohydrology, 11, 1–23. https://doi.org/10.1002/eco.1881.

    Article  Google Scholar 

  • Williams, J. R., & Berndt, H. D. (1972). Sediment yield computed with universal equation. Journal of Hydraulic Division, ASCE, 98(12), 2087–2098.

    Google Scholar 

  • Wischmeier, W. H. (1976). Use and misuse of the universal soil loss equation. Soil and Water Conservation, 31(1), 5.

    Google Scholar 

  • Wischmeier, W.H., Smith, D.D. (1978). Predicting rainfall erosion losses – a guide to conservation planning. U.S. Department of Agriculture handbook No. 537.

  • Woodbury, R. O., & Weaver, P. L. (1987). The vegetation of St. John and Hassel Island, USVI National Park Service, Southeast Region, Research/Resources Management Report SER-83. Atlanta: Georgia.

    Google Scholar 

Download references

Acknowledgments

Special thanks to Stephen V. Smith, Alejandro Hinojosa Corona, María Elena Solana Arellano, María Isabel Pérez Montfort, Matthew Brand, Jochen Schubert, Brett Sanders, Robert Harrington, Whitney Sears, Esther Araiza, Mario Vega, Eloisa Aparício, Ivonne Pedrin, Belinda Sandoval, and the Virgin Island Environmental Resource Station (VIERS).

Funding

This study was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT), and the National Oceanic and Atmospheric Administration Ecological Effects of Sea Level Rise Program (award NA16NOS4780206). Field and some lab work were supported by funding from the American Recovery and Reinvestment Act (ARRA) and the National Oceanic and Atmospheric Administration Coral Reef Conservation Program to Dr. Sarah C. Gray from University of San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kretzschmar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18.5 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudino-Elizondo, N., Kretzschmar, T. & Gray, S.C. Stream flow composition and sediment yield comparison between partially urbanized and undisturbed coastal watersheds—case study: St. John, US Virgin Islands. Environ Monit Assess 191, 676 (2019). https://doi.org/10.1007/s10661-019-7778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7778-4

Keywords

Navigation