Skip to main content
Log in

Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology

Revue: Méthodes électriques basses-fréquences et leurs applications à la caractérisation du sous-sol et au suivi hydrogéologique

Revisión: Algunos métodos eléctricos de baja frecuencia para la caracterización subsuperficial y el monitoreo en hidrogeología

综述:水文地质学中针对地下特征描述和监测的若干低频电方法

Revisão: Alguns métodos elétricos de baixa frequência para a caraterização da subsuperfície e monitorização em hidrogeologia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization techniques, which have potential in many environmental and hydrogeological applications. They provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of electrical current due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redox-active species. Under some conditions, this method can be used to visualize groundwater flow, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Time-lapse resistivity can be used to assess the permeability and dispersivity distributions and to monitor contaminant plumes. Induced polarization characterizes the ability of rocks to reversibly store electrical energy. It can be used to image permeability and to monitor chemistry of the pore water–minerals interface. These geophysical methods, reviewed in this paper, should always be used in concert with additional in-situ measurements (e.g. in-situ pumping tests, chemical measurements of the pore water), for instance through joint inversion schemes, which is an area of fertile on-going research.

Résumé

Les méthodes géoélectriques basses-fréquences incluent principalement la méthode de potentiel spontané, la résistivité, et la polarisation provoquée. Ces méthodes ont de nombreuses applications environnementales et hydrogéologiques. Elles fournissent des informations complémentaires les unes vis-à-vis des autres ainsi que vis-à-vis des mesures in situ. La méthode de potentiel spontané est une mesure passive de la réponse électrique associée à l’existence d’un courant in situ, lequel est lié soit à l’écoulement de l’eau dans un milieu poreux, à un gradient de salinité, et/ou à un gradient de concentrations d’espèces redox ioniques. Sous certaines conditions, cette méthode peut être utilisée pour visualiser l’écoulement de l’eau dans le sous-sol, pour déterminer la perméabilité, ou pour détecter des chemins d’écoulement préférentiels. La résistivité électrique dépend du contenu en eau des roches, de la température, de la salinité de l’eau porale, du contenu en argile ainsi que de la minéralogie de la phase argileuse. Le monitoring de la résistivité électrique peut être utilisé pour avoir accès à la perméabilité ainsi qu’à la dispersivité hydrodynamique et peut être utilisé pour le suivi de panaches de contamination. La polarisation provoquée caractérise la capacité des roches à stocker de manière réversible de l’énergie électrique. Cette méthode peut être utilisée pour déterminer la perméabilité et pour suivre dans le temps la chimie de l’interface eau/minéraux. Ces méthodes géophysiques, dont la synthèse est faite dans cet article, devraient toujours être associées à des mesures in situ (e.g., tests de pompage, mesures chimiques de l’eau porale), à travers des schémas d’inversion jointe, ce qui correspond à un domaine de recherche très actif.

Resumen

Los métodos geoeléctricos de baja frecuencia incluyen principalmente potencial espontáneo, resistividad, y técnicas de polarización inducida, las cuales que tienen potencialidad en muchas aplicaciones hidrogeológicas y ambientales. Ellos proporcionan información complementaria recíprocamente y a las mediciones in situ. El método de potencial espontáneo es una medida pasiva de la respuesta eléctrica asociada con la generación in situ de corrientes eléctricas debido a flujo de agua poral en un medio poroso, un gradiente de salinidad, y/o la concentración de especies redox activas. Bajo ciertas condiciones, este método puede ser usado para visualizar el flujo de agua subterránea, determinar la permeabilidad, y detectar trayectorias preferenciales en el flujo. La resistividad eléctrica depende del contenido de agua, de la temperatura, de la salinidad de agua poral, y el contenido y mineralogía de las arcillas. La resistividad en función del tiempo puede ser usada para evaluar a las distribuciones de permeabilidad y dispersividad y monitorear plumas de contaminación. La polarización inducida caracteriza la habilidad de las rocas para almacenar energía eléctrica reversiblemente. Ello puede ser usado para dar una imagen de la permeabilidad y para el monitoreo químico de la interfase agua poral - minerales. Estos métodos geofísicos, revisados en este trabajo, deben ser siempre usados en combinación con otras mediciones in situ (por ejemplo, ensayos de bombeo in situ, mediciones químicas del agua poral), por ejemplo a través de esquemas de inversión conjunta, que es un área de investigación fértil y activa.

摘要

低频地电方法主要包括自然电位、电阻率以及激发极化技术,它们在许多环境和水文地质的应用中均有潜力。这些方法互相间提供补充信息,同样也给原位测试提供信息。自然电位方法是电反应的一个消极测量方法,该电反应与电流的原位生成相关,而电流的原位生成是因为多孔介质中水的流动,盐度梯度的存在,以及(或)氧化还原活性物种的聚集。在某些情况下,该方法可用于可视化地下水流动,确定渗透率和查明优先流路径。电阻率取决于含水率、温度、孔隙水的盐度以及粘土含量和矿物。延时电阻可以用于估算渗透率和分散性分布,以及检测污染晕。激发极化法刻画了延时可逆的储存电能的能力。它可以用于描绘渗透率以及检测孔隙水-矿物分界面的化学特征。本文综述了这些地球物理学方法,且应该一直用于与原位测试(如原位抽水试验、孔隙水的化学测试)的协同作用,例如通过联合转换方案,这是一个正在进行的内容丰富的研究领域。

Resumo

Métodos geoelétricos de baixa-frequência incluem principalmente o potencial espontâneo, a resistividade e métodos de polarização induzida, os quais apresentam potencial em muitas aplicações ambientais e hidrogeológicas. Esses métodos providenciam informação complementar uns em relação aos outros e em relação a medições in situ. O método do potencial espontâneo é uma medição passiva da resposta elétrica associada com a geração in situ de corrente elétrica devido ao fluxo de água nos poros em meios porosos, ao gradiente de salinidade e/ou à concentração de espécies redox activas. Sob certas condições, este método pode ser usado para visualizar o fluxo de água subterrânea, para determinar a permeabilidade e para detetar caminhos de fluxo preferencial. A resistividade elétrica está dependente do conteúdo em água, da temperatura, da salinidade da água nos poros, do conteúdo em argila e da mineralogia. A resistividade de lapso de tempo pode ser usada para avaliar a distribuição da permeabilidade e dispersividade e para monitorizar plumas contaminantes. A polarização induzida carateriza a capacidade das rochas para armazenar energia elétrica de forma reversível. Pode ser usada para criar uma imagem da permeabilidade e para monitorizar o quimismo da interface água-minerais nos poros. Os métodos geofísicos, revistos neste documento, devem sempre ser usados em conjunto com medições adicionais in situ (eg. ensaios de caudal in situ, dados químicos da água dos poros), por exemplo através de esquemas de inversão conjunta, que é uma área de pesquisa atual muito fértil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Abu-Zeid N, Bianchini G, Santarato G, Vaccaro C (2004) Geochemical characterization and geophysical mapping of landfill leachates: the Marozzo Canal case study (NE Italy). Environ Geol 45:439–447

    Article  Google Scholar 

  • AlSaigh NH, Mohammed ZS, Dahham MS (1994) Detection of water leakage from dams by self-potential method. Eng Geol 37:115–121

    Article  Google Scholar 

  • Andersen K, Brooks S, Hansen M (2001) A Bayesian approach to crack detection in electrically conductive media. Inverse Problems 17:121–136

    Article  Google Scholar 

  • Antelman MS (1989) The encyclopedia of chemical electrode potentials. Plenum, New York

    Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Pet Trans AIME 146:54–62

    Google Scholar 

  • Aristodemou E, Thomas-Betts A (2000) DC resistivity and induced polarization investigation at a waste disposal site and its environments. J Appl Geophys 44:275–302

    Article  Google Scholar 

  • Arora T, Linde N, Revil A, Castermant J (2007) Non-intrusive determination of the redox potential of contaminant plumes by using the self-potential method. J Contam Hydrol 92:274–292

    Article  Google Scholar 

  • Atekwana EA, Slater LD (2009) Biogeophysics: a new frontier in earth science research. Rev Geophys 47:RG4004

    Article  Google Scholar 

  • Atekwana EA, Atekwana E, Werkema DD, Allen JP, Smart LA, Duris JW, Cassidy DP, Sauck WA, Rossbach S (2004) Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments. Geophys Res Lett 31:L23501

    Article  Google Scholar 

  • Barchini R, Saville DA (1995) Dielectrical response measurements on concentrated colloidal dispersions. J Colloid Interface Sci 173:86–91

    Article  Google Scholar 

  • Barus C (1882) On the electrical activity of ore bodies. In: Becker GF (ed) Geology of the Comstock lode and the Washoe District. US Geol Surv Monog, US Geological Survey, Reston, VA, pp 309–367 and 400–404

  • Bernstone C, Dahlin T (1997) DC resistivity mapping of old landfills: two case studies. Eur J Environ Eng Geophys 2:121–136

    Google Scholar 

  • Bernstone C, Dahlin T, Ohlsson T, Hogland W (2000) DC-resistivity mapping of internal landfill structures: two pre-excavation surveys. Environ Geol 39:360–371

    Article  Google Scholar 

  • Bertin J, Loeb J (1976) Experimental and theoretical aspects of induced polarization, vols 1 and 2. Borntraeger, Berlin

  • Bertrand EA, Endres A (2009) Complex dielectrical response of ellipsoidal particles with surface contribution. J Phys Chem 130:224705

    Article  Google Scholar 

  • Bigalke J, Grabner EW (1997) The Geobattery model: a contribution to large scale electrochemistry. Electrochim Acta 42:3443–3452

    Article  Google Scholar 

  • Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Heidelberg, pp 129–156

  • Binley A, Cassiani G, Middleton R, Winship P (2002) Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging. J Hydrol 267:147–159

    Article  Google Scholar 

  • Binley A, Slater L, Fukes M, Cassiani G (2005) The relationship between frequency dependent electrical conductivity and hydraulic properties of saturated and unsaturated sandstone. Water Resour Res 41(13):W12417

    Article  Google Scholar 

  • Blaschek R, Hördt A, Kemna A (2008) A new sensitivity-controlled focusing regularization scheme for the inversion of induced polarization data based on the minimum gradient support. Geophysics 73:F45–F54

    Article  Google Scholar 

  • Bogoslovsky VA, Ogilvy AA (1972) The study of streaming potentials on fissured media models. Geophys Prospect 20(1):109–117. doi:10.1111/j.1365-2478.1972.tb00624.x

    Google Scholar 

  • Bockris JO’M, Reddy AKN (1970) Modern electrochemistry, 2. Plenum, New York

    Google Scholar 

  • Bogoslovsky VV, Ogilvy AA (1973) Deformations of natural electrical fields near drainage structures. Geophys Prospec 21:716–723

    Article  Google Scholar 

  • Bolève A, Crespy A, Revil A, Janod F, Mattiuzzo JL (2007) Streaming potentials of granular media: influence of the Dukhin and Reynolds numbers. J Geophys Res 112:B08204. doi:10.1029/2006JB004673

    Article  Google Scholar 

  • Bolève A, Revil A, Janod F, Mattiuzzo JL, Fry J-J (2009) Preferential fluid flow pathways in embankment dams imaged by self-potential tomography. Near Surf Geophys 7(5):447–462. doi:10.3997/1873-0604.2009012

    Google Scholar 

  • Bordi F, Cametti C, Rosi A, Calcabrini A (1993) Frequency domain electrical conductivity measurements of the passive electrical properties of human lymphocytes. Biochim Biophys Acta 1153(1):77–88

    Article  Google Scholar 

  • Börner FD (1992) Complex conductivity measurements of reservoir properties. Proc. Third European Core Analysis Symposium, Paris, September 1992, pp 359-386

  • Börner FD (2006) Complex conductivity measurements. In: Groundwater Geophysics, pp 119–153. doi:10.1007/3-540-29387-6_4

  • Börner F, Gruhne M, Schön J (1993) Contamination indications derived from electrical properties in the low frequency range. Geophys Prospect 41:83–98

    Article  Google Scholar 

  • Börner FD, Schopper JR, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys Prosp 44:583–601

    Article  Google Scholar 

  • Cametti C, de Luca F, Macri MA, Maraviglia B, Zimatore G, Bordi F, Misasi R, Sorice M, Lenti L, Pavan A (1995) To what extent the passive electrical parameters of lymphocyte membranes deduced from impedance spectroscopy altered by surface roughness and microvillosity? Colloids Surf B Biointerfaces 3(5):309–316

    Article  Google Scholar 

  • Cassiani G, Kemna A, Villa A, Zimmermann E (2009) Spectral induced polarization for the characterization of free-phase hydrocarbon contamination of sediments with low clay content. Near Surf Geophys 7(5–6):547–562

    Google Scholar 

  • Castermant J, Mendonça CA, Revil A, Trolard F, Bourrié G, Linde N (2008) Redox potential distribution inferred from self-potential measurements during the corrosion of a burden metallic body. Geophys Prospect 56:269–282. doi:10.1111/j.1365-2478.2007.00675.x

    Article  Google Scholar 

  • Chelidze TL, Derevjanko AI, Kurilenko OD (1977) Electrical spectroscopy of heterogeneous systems (in Russian). Naukova Dumka, Kiev, Russia

    Google Scholar 

  • Chen Y, Or D (2006) Effects of Maxwell-Wagner polarization on soil complex dielectrical permittivity under variable temperature and electrical conductivity. Water Resour Res 42:W06424. doi:10.1029/2005WR004590

    Article  Google Scholar 

  • Chen JS, Hubbard SS, Williams KH et al (2009) A state-space Bayesian framework for estimating biogeochemical transformations using time-lapse geophysical data. Water Resour Res 45:W08420

    Article  Google Scholar 

  • Coggon JH (1971) Electromagnetic and electrical modelling by the finite element method. Geophysics 36:132–155

    Article  Google Scholar 

  • Coggon H (1973) A comparison of IP electrode arrays. Geophysics 38(4):737–761

    Article  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics: I, alternating current characteristics. J Chem Phys 9:341–351

    Article  Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300

    Article  Google Scholar 

  • Corwin RF, Hoover DB (1979) The self-potential method in geothermal exploration. Geophysics 44:226–245

    Article  Google Scholar 

  • Corwin RF, Morrison HF, Diaz S, Rodriguez J (1979) Self-potential studies at the Cerro Prieto geothermal field. In: Proceedings of the First Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, September 20–22, 1978, Report LBL-7098, , Lawrence Berkeley Lab, San Diego, pp 204–210

  • Cosenza P, Ghorbani A, Camerlynck C, Rejiba F, Guérin R, Tabbagh A (2009) Effective medium theories for modelling the relationships between electromagnetic properties and hydrological variables in geomaterials: a review. Near Surf Geophys 7:563–578

    Google Scholar 

  • Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen H-J (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241. doi:10.1016/S0169-7722(00)00109-1

    Google Scholar 

  • Dahlin T (2000) Short note on electrode charge-up effects in DC resistivity data acquisition using multi-electrode arrays. Geophys Prospect 48:181–187

    Article  Google Scholar 

  • Daily WD, Ramirez AL, LaBrecque DJ, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28:1429–1442

    Article  Google Scholar 

  • Daily W, Ramirez A, Johnson R (1998) Electrical impedance tomography of a perchloroethylene release. J Environ Eng Geophys 2:189–201

    Google Scholar 

  • Davis CA, Atekwana E, Atekwana E, Slater LD, Rossbach S, Mormile MR (2006) Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophys Res Lett 33(18):L18403

    Article  Google Scholar 

  • de Lima OAL, Sharma MM (1992) A generalized Maxwell–Wagner theory for membrane polarization in shaly sands. Geophysics 57:431–440

    Article  Google Scholar 

  • deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624

    Article  Google Scholar 

  • Dey A, Morrison HF (1973) Electromagnetic coupling in frequency and time domain induced polarisation surveys over multilayered earth. Geophysics 38:380–405

    Article  Google Scholar 

  • Dey A, Morrison HF (1979a) Resistivity modeling for arbitrary shaped two-dimensional structures. Geophys Prospect 27:106–136

    Article  Google Scholar 

  • Dey A, Morrison HF (1979b) Resistivity modeling for arbitrarily three-dimensional structures. Geophysics 44:753–780

    Article  Google Scholar 

  • Douglas Y, Oldenburg W (1996) DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments. J Appl Geophys 34:187–198

    Article  Google Scholar 

  • Drolon H, Hoyez B, Druaux F, Faure A (2003) Multiscale roughness analysis of particles: application to the classification of detrital sediments. Math Geol 35(7):805–817

    Article  Google Scholar 

  • Dukhin SS, Shilov VN (1974) Dielectrical phenomena and the double layer in disperse systems and polyelectrolytes. Wiley, New York

    Google Scholar 

  • Dukhin SS, Shilov VN (2002) Non-equilibrium electrical surface phenomena and extended electrokinetic characterization of particles. In: Delgado AV (ed) Interfacial electrokinetics and electrophoresis. SurfactantScience Series, 106. CRC, Boca Raton, FL, pp 55–85

  • Dupuis JC, Butler KE, Kepic AW, Harris BD (2009) Anatomy of a seismoelectrical conversion: measurements and conceptual modeling in boreholes penetrating a sandy aquifer. J Geophys Res 114:B10306. doi:10.1029/2008JB005939

    Article  Google Scholar 

  • Ellis DV, Singer JM (2007) Well logging for earth scientists, 2nd edn. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Fitterman DV, Corwin RF (1982) Inversion of self-potential data from the Cerro Prieto geothermal field, Mexico. Geophysics 47:938–945

    Article  Google Scholar 

  • Fixman M (1980) Charged macromolecules in external fields: I, the sphere. J Chem Phys 72(a):5177–5186

    Article  Google Scholar 

  • Flores Orozco A, Williams KH, Long PE, Hubbard SS, Kemna A (2011) Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer. J Geophys Res 116:G03001. doi:10.1029/2010JG001591

    Article  Google Scholar 

  • Florsch N, Llubes M, Téreygeol F, Ghorbani A, Roblet P (2010) Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel-Minier site. J Archaeol Sci 38(2):438–451. doi:10.1016/j.jas.2010.09.027

    Article  Google Scholar 

  • Fournier C (1989) Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: case history of the Chaîne des Puys (Puyde-Dôme, France). Geophys Prospect 37:647–668

    Article  Google Scholar 

  • Fox RW (1830) On the electromagnetic properties of metalliferous veins in the mines of Cornwall. Philos Trans R Soc 120:399–414

    Article  Google Scholar 

  • Fuoss RMD, Kirkwood JG (1941) Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems. J Am Chem Soc 63:385–394

    Article  Google Scholar 

  • Gelius LJ, Wang Z (2008) Modelling production caused changes in conductivity for a siliclastic reservoir: a differential effective medium approach. Geophys Prospect 56(5):677–691

    Article  Google Scholar 

  • Gex P (1980) Electrofiltration phenomena associated with several dam sites. Bull Soc Vaud Sci Nat 357:39–50

    Google Scholar 

  • Gex P (1993) Electrofiltration measurements on the Frasse landslide, the Pre-Alps of western Switzerland. Hydrogéol 3:239–246

    Google Scholar 

  • Ghorbani A, Cosenza Ph, Ruy S, Doussan C, Florsch N (2008) Noninvasive monitoring of water infiltration in a clay loamy soil using spectral induced polarization. Water Resour Res 44:W08402. doi:10.1029/2007WR006114

    Article  Google Scholar 

  • Ghorbani A, Camerlynck C, Florsch N (2009) CR1Dinv: a Matlab program to invert 1D spectral induced polarization data for the Cole-Cole model including electromagnetic effects. Comput Geosci 35:255–266

    Article  Google Scholar 

  • Goes BJM, Meekes JAC (2004) An effective electrode configuration for the detection of DNAPLs with electrical resistivity tomography. J Environ Eng Geophys 9:127–141

    Article  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363

    Article  Google Scholar 

  • Grech RT, Cassar J, Muscat KP, Camilleri SG, Fabri M, Zervakis P, Xanthopoulos V, Sakkalis B, Vanrumste B (2008) Review on solving the inverse problem in EEG source analysis. J Neuro Eng Rehabil 5:25

    Article  Google Scholar 

  • Grosse C (2009) Generalization of a classic theory of the low frequency dielectrical dispersion of colloidal suspensions to electrolyte solutions with different ion valences. J Phys Chem B 113:11201–11215

    Article  Google Scholar 

  • Grunewald E, Knight R (2011) A laboratory study of NMR relaxation times in unconsolidated heterogeneous sediments. Geophysics 76(4):G73–G84. doi:10.1190/1.3581094

    Article  Google Scholar 

  • Ha HS, Kim DS, Park IJ (2010) Application of electrical resistivity techniques to detect weak and fracture zones during underground construction. Environ Earth Sci 60:723–731

    Article  Google Scholar 

  • Haas A, Revil A (2009) Electrical signature of pore scale displacements. Water Resour Res 45:W10202

    Article  Google Scholar 

  • Hase H, Hashimoto T, Sakanaka S, Kanda W, Tanaka Y (2005) Hydrothermal system beneath Aso volcano as inferred from self-potential mapping and resistivity structure. J Volcanol Geotherm Res 143:259–277

    Article  Google Scholar 

  • Hayley K, Bentley LR, Gharibi M, Nightingale M (2007) Low temperature dependence of electrical resistivity: implications for near surface geophysical monitoring. Geophys Res Lett 34:L18402

    Article  Google Scholar 

  • Helmholz H (1879) Study concerning electrical boundary layers. Weidemann Annal Physik Chemie 7:337–382, 3rd Ser

    Article  Google Scholar 

  • Hilfer R (2002) Analytical representations for relaxation function of glasses. J Non-Cryst Solids 305:122–126

    Article  Google Scholar 

  • Hohmann GW (1973) Electromagnetic coupling between grounded wires at the surface of a two-layer earth. Geophysics 38:854–863

    Article  Google Scholar 

  • Hubbard S, Linde N (2011) Hydrogeophysics. In: Wilderer P (ed) Treatise on water science, 1. Academic, Oxford, pp 401–434

    Chapter  Google Scholar 

  • Holstetler JD (1984) Electrode electrons, aqueous electrons, and redox potentials in natural waters. Am J Sci 284:34–759

    Google Scholar 

  • Hyslip JP, Vallejo LE (1997) Fractal analysis of the roughness and size distribution of granular materials. Eng Geol 48(3–4):231–244

    Article  Google Scholar 

  • Ingeman-Nielsen T, Baumgartner F (2006) CR1Dmod: a Matlab program to model 1D complex resistivity effects in electrical and EM surveys. Comput Geosci 32:1411–1419

    Article  Google Scholar 

  • Ishido T (1989) Self-potential generation by subsurface water flow through electrokinetic coupling. In: Merkler G-P, Militzer H, Hötzl H, Armbruster H, Brauns J (eds) Detection of subsurface flow phenomena. Lecture Notes in Earth Sciences, 27. Springer, Berlin, pp 121–131

    Chapter  Google Scholar 

  • Ishido T (2004) Electrokinetic mechanism for ‘W’-shaped self-potential profile on volcanoes. Geophys Res Lett 31:L15616. doi:10.1029/2004GL020409

    Article  Google Scholar 

  • Ishido T, Pritchett JW (1999) Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. J Geophys Res 104(B7):15 247–15 259

    Google Scholar 

  • Jardani A, Revil A (2009) Stochastic joint inversion of temperature and self-potential data. Geophys J Int 179(1):640–654. doi:10.1111/j.1365-246X.2009.04295.x

    Article  Google Scholar 

  • Jardani A, Dupont JP, Revil A (2006a) Self-potential signals associated with preferential ground water flow pathways in sinkholes. J Geophys Res 111:B09204. doi:10.1029/2005JB004231

    Article  Google Scholar 

  • Jardani A, Revil A, Akoa F, Schmutz M, Florsch N, Dupont JP (2006b) Least-squares inversion of self-potential (SP) data and application to the shallow flow of the ground water in sinkholes. Geophys Res Lett 33(19):L19306. doi:10.1029/2006GL027458

    Article  Google Scholar 

  • Jardani A, Revil A, Bolève A, Dupont JP, Barrash W, Malama B (2007a) Tomography of groundwater flow from self-potential (SP) data. Geophys Res Lett 34:L24403

    Article  Google Scholar 

  • Jardani A, Revil A, Santos F, Fauchard C, Dupont JP (2007b) Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophys Prospect 55:1–11. doi:10.1111/j.1365-2478.2007.00638.x

    Article  Google Scholar 

  • Jardani A, Revil A, Bolève A, Dupont JP (2008) 3D inversion of self-potential data used to constrain the pattern of ground water flow in geothermal fields. J Geophys Res 113:B09204

    Article  Google Scholar 

  • Jardani A, Revil A, Barrash W, Crespy A, Rizzo E, Straface S, Cardiff M, Malama B, Miller C, Johnson T (2009) Reconstruction of the water table from self potential data during dipole pumping/injection test experiment. Ground Water 47(2):213–227

    Article  Google Scholar 

  • Jardani A, Revil A, Slob E, Sollner W (2010) Stochastic joint inversion of 2D seismic and seismoelectrical signals in linear poroelastic materials. Geophysics 75(1):N19–N31. doi:10.1190/1.3279833,2010

    Article  Google Scholar 

  • Johnson TC, Versteeg RJ, Ward A, Day-Lewis FD, Revil A (2010) Improved hydrogeophysical characterization and monitoring through high performance electrical geophysical modeling and inversion. Geophysics 75(4):WA27–WA41. doi:10.1190/1.3475513

    Article  Google Scholar 

  • Jougnot D, Ghorbani A, Revil A, Leroy P, Cosenza P (2010) Spectral induced polarization of partially saturated clay-rocks: a mechanistic approach. Geophys J Int 180(1):210–224. doi:10.1111/j.1365-246X.2009.04426.x

    Article  Google Scholar 

  • Karaoulis M, Kim J-H, Tsourlos PI (2011a) 4D active time constrained inversion. J Appl Geophys 73:25–34

    Article  Google Scholar 

  • Karaoulis M, Revil A, Werkema DD, Minsley B, Woodruff WF, Kemna A (2011b) Time-lapse 3D inversion of complex conductivity data using an active time constrained (ATC) approach. Geophys J Int 187:237–251. doi:10.1111/j.1365-246X.2011.05156.x

    Article  Google Scholar 

  • Kemna A (2000) Tomographic inversion of complex resistivity: theory and application. PhD Thesis, Bochum Ruhr-Univ., Germany, 176 pp

  • Kemna A, Binley A (1996) Complex electrical resistivity tomography for contaminant plume delineation. Proceedings of the 2nd Meeting on Environmental and Engineering Geophysics, Environmental and Engineering Geophysical Society, European Section, Nantes, France, September 1996, pp 196–199

  • Kemna A, Binley A, Ramirez AL, Daily WD (2000) Complex resistivity tomography for environmental applications. Chem Eng J 77:11–18

    Article  Google Scholar 

  • Kemna A, Vanderborght J, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146

    Article  Google Scholar 

  • Kemna A, Binley A, Slater L (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69:97–107

    Article  Google Scholar 

  • Kemna A, Binley A, Day-Lewis F, Englert A, Tezkan B, Vanderborght J, Vereecken H, Winship P (2006) Solute transport processes. In: Vereecken H, Binley A, Cassiani G, Revil A, Titov K (eds) Applied hydrogeophysics, NATO Science Series IV – Earth and Environmental Sciences, vol 71. Springer, Heidelberg, pp 117–159

  • Kitsopoulos KP (1999) Cation-exchange capacity (CEC) of zeolitic volcaniclastic materials: applicability of the ammonium acetate saturation (AMAS) method. Clays Clay Miner 47:688–696

    Article  Google Scholar 

  • Koestel J, Vanderborght J, Javaux M, Kemna A, Binley A, Vereecken H (2009) Noninvasive 3-D transport characterization in a sandy soil using ERT: 2, transport process inference. Vadose Zone J 8:723–734

    Article  Google Scholar 

  • Kulessa B, Hubbard B, Brown GH (2003a) Cross-coupled flow modeling of coincident streaming and electrochemical potentials, and application to subglacial self-potential (SP) data. J Geophys Res 108(B8):2381. doi:10.1029/2001JB1167

    Article  Google Scholar 

  • Kulessa B, Hubbard B, Brown GH, Becker J (2003b) Earth tide forcing of glacier drainage. Geophys Res Lett 30(1):1011. doi:10.1029/2002GL105303

    Article  Google Scholar 

  • Kuwano O, Nakatani M, Yoshida S (2006) Effect of the flow state on streaming current. Geophys Res Lett 33:L21309. doi:10.1029/2006GL027712

    Article  Google Scholar 

  • Kuwano O, Nakatani M, Yoshida S (2007) Reply to comment by A. Revil on “Effect of the flow state on streaming current”. Geophys Res Lett 34:L09312. doi:10.1029/2006GL029136

    Article  Google Scholar 

  • LaBrecque DJ (1991) IP tomography. Expanded Abstracts of the 61st Annual International Meeting, Society of Exploration Geophysicists, Houston, TX, USA, pp 413–416

  • LaBrecque DJ, Miletto M, Daily WD, Ramirez AL, Owen E (1996) The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 61:538–548

    Article  Google Scholar 

  • Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics 70(3):11–18

    Article  Google Scholar 

  • Le Méhauté A, Crépy G (1983) Introduction to transfer and transport in fractal medium. Solid State Ion 9–10:17–30

    Google Scholar 

  • Legaz A, Vandemeulebrouck J, Revil A, Kemna A, Hurst AW, Reeves PR (2009) A case study of resistivity and self-potential signatures of hydrothermal instabilities, Inferno Crater Lake, Waimangu, New Zealand. Geophys Res Lett 36:L12306. doi:10.1029/2009GL037573

    Article  Google Scholar 

  • Leroy P, Revil A (2009) Spectral induced polarization of clays and clay-rocks. J Geophys Res 114:B10202. doi:10.1029/2008JB006114

    Article  Google Scholar 

  • Leroy P, Revil A, Kemna A, Cosenza P, Gorbani A (2008) Spectral induced polarization of water-saturated packs of glass beads. J Colloid Interface Sci 321(1):103–117

    Article  Google Scholar 

  • Lesmes DP, Morgan FD (2001) Dielectrical spectroscopy of sedimentary rocks. J Geophy Res 106(B7):13329–13346

    Article  Google Scholar 

  • Linde N, Revil A (2007) Inverting residual self-potential data for redox potentials of contaminant plumes. Geoph Res Lett 34:L14302. doi:10.1029/2007GL030084

    Article  Google Scholar 

  • Linde N, Jougnot D, Revil A, Matthaï SK, Arora T, Doussan C (2007) Streaming current generation in two-phase flow conditions. Geoph Res Lett 34(3):L03306. doi:10.1029/2006GL028878

    Article  Google Scholar 

  • Lines LR, Treitel S (1984) Tutorial: a review of least-squares inversion and its application to geophysical problems. Geophys Prospect 32:159–186

    Article  Google Scholar 

  • Loke MH, Chambers JE, Ogilvy RD (2006) Inversion of 2D spectral induced polarization imaging data. Geophys Prospect 54:287–301

    Article  Google Scholar 

  • Lyklema J (2002) The role of surface conduction in the development of electrokinetics. In: Delgado AV (ed) Interfacial electrokinetics and electrophoresis. Surfactant Sci Ser 106:87-97

  • Malinverno A, Torres-Verdin C (2000) Bayesian inversion of DC electrical measurements uncertainties for reservoir monitoring. Inverse Probl 16:1343–1356

    Article  Google Scholar 

  • Marshall DJ, Madden TR (1959) Induced polarization: a study of its causes. Geophysics 24:790–813

    Article  Google Scholar 

  • Matteucci MC (1865) Sur les Courants Electriques de la Terre [On the electrical currents of the earth]. Annal Chimie Physiq 4(4):177–192

    Google Scholar 

  • McDonald JR (1987) Impedance spectroscopy: emphasizing solid materials and analysis. Wiley, New York

    Google Scholar 

  • Meads LN, Bentley LR, Mendoza CA (2003) Application of electrical resistivity imaging to the development of a geologic model for a proposed Edmonton landfill site. Can Geotech J 40:551–558

    Article  Google Scholar 

  • Mendonça CA (2008) Forward and inverse self-potential modeling in mineral exploration. Geophysics 73(1):F33–F43

    Article  Google Scholar 

  • Merkler G-P, Militzer H, Hötzl H, Armbruster H, Brauns J (1989) Detection of subsurface flow phenomena. Lecture Notes in Earth Sciences, 27. Springer, Berlin

    Book  Google Scholar 

  • Miller C, Routh P, Brosten T, McNamara J (2007) Watershed characterization using seasonal time-lapse DC resistivity data, SEG. Expanded Abstr 26(1):1177–1181

    Article  Google Scholar 

  • Millett FB (1967) Electromagnetic coupling of collinear dipoles on a uniform halfspace. In: Mining geophysics, vol II. Society of Exploration Geophysicists, Tulsa, OK, pp 401-419

  • Minsley BJ, Sogade J, Morgan FD (2007a) Three-dimensional source inversion of self-potential data. J Geophys Res 112:B02202. doi:1029/2006JB004262

    Article  Google Scholar 

  • Minsley BJ, Sogade J, Morgan FD (2007b) Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina. Water Resour Res 43:W04429. doi:10.1029/2005WR003996

    Article  Google Scholar 

  • Moreau F, Gibert D, Saracco G (1996) Filtering non-stationary geophysical data with orthogonal wavelets. Geophys Res Lett 23:407–410

    Article  Google Scholar 

  • Müller K, Vanderborght J, Englert A, Kemna A, Huisman JA, Rings J, Vereecken H (2010) Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resour Res 46:W03502. doi:10.1029/2008WR007595

    Article  Google Scholar 

  • Naudet V, Revil A (2005) A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophys Res Lett 32:L11405. doi:10.1029/2005GL022735

    Article  Google Scholar 

  • Naudet V, Revil A, Bottero J-Y Bégassat P (2003) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30(21):2091. doi:10.1029/2003GL018096

    Article  Google Scholar 

  • Naudet V, Revil A, Rizzo E, Bottero J-Y, Bégassat P (2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. HESS 8(1):8–22

    Google Scholar 

  • Nobes DC (1996) Troubled waters: environmental applications of electrical and electromagnetic methods. Surv Geophys 17:393–454

    Article  Google Scholar 

  • Nordsiek S, Weller A (2008) A new approach to fitting induced polarization spectra. Geophysics 73:F235–F245. doi:10.1190/1.2987412

    Article  Google Scholar 

  • Nourbehecht B (1963) Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectrical problems. PhD Thesis, MIT, Cambridge, USA

  • Ntarlagiannis D, Williams KH, Slater L, Hubbard S (2005a) Low-frequency electrical response to microbial induced sulfide precipitation. J Geophys Res 110:G02009

    Article  Google Scholar 

  • Ntarlagiannis D, Yee N, Slater L (2005b) On the low-frequency electrical polarization of bacterial cells in sands. Geophys Res Lett 32:L24402

    Article  Google Scholar 

  • Ntarlagiannis D, Atekwana EA, Hill EA, Gorby Y (2007) Microbial nanowires: is the subsurface “hardwired”? Geophys Res Lett 34:L17305. doi:10.1029/2007GL030426

    Article  Google Scholar 

  • Ntarlagiannis D, Doherty R, Williams KH (2010) Spectral induced polarization signatures of abiotic FeS precipitation. Geophysics 75(4):F127–F133. doi:10.1190/1.3467759

    Article  Google Scholar 

  • Ohm GS (1827) Die galvanische Kette: mathematisch bearbeitet [The galvanic circuit investigated mathematically]. Kessinger, Berlin, 254 pp

  • Olhoeft GR (1985) Low-frequency electrical properties. Geophysics 50:2492–2503

    Article  Google Scholar 

  • Olhoeft GR (1986) Direct detection of hydrocarbon and organic chemicals with ground-penetrating radar and complex resistivity: petroleum, hydrocarbons and organic chemicals in ground water-prevention, detection, and restoration. NWWA/API, Proceedings, Houston, TX, November 1996, pp 284–305

  • Park SK, Van GP (1991) Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics 56:951–960

    Article  Google Scholar 

  • Paul M-K (1965) Direct interpretation of self-potential anomalies caused by inclined sheets of infinite horizontal extensions. Geophysics 30:418–423

    Article  Google Scholar 

  • Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surv Geophys 23:101–132

    Article  Google Scholar 

  • Pelton WH, Ward SH, Hallof PG, Sill WR, Nelson PH (1978) Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 43:588–609

    Article  Google Scholar 

  • Pelton WH, Sill WR, Smith BD (1983) Interpretation of complex resistivity and dielectrical data, part I. Geophys Trans 29:297–330

    Google Scholar 

  • Perrier F, Trique M, Lorne B, Avouac J-P, Hautot S, Tarits P (1998) Electrical potential variations associated with yearly lake level variations. Geophys Res Lett 25:1955–1959

    Article  Google Scholar 

  • Personna YR, Ntarlagiannis D, Slater L, Yee N, O’Brien M, Hubbard SS (2008) Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations. J Geophys Res 113:G02020

    Article  Google Scholar 

  • Petiau G (2000) Second generation of lead-lead chloride electrodes for geophysical applications. Pure Appl Geophys 157:357–382

    Article  Google Scholar 

  • Pride S (1994) Governing equations for the coupled electromagnetics and acoustics of porous media. Phys Rev B 50(21):15678–15696

    Article  Google Scholar 

  • Pridmore DF, Hohmann GW, Ward SH, Sill WR (1981) An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics 46:1009–1024

    Article  Google Scholar 

  • Quincke G (1859) Concerning a new type of electrical current. Annal Physics Chemie (Poggendorff’s Annal, Ser. 2) 107:1–47

    Google Scholar 

  • Ramirez AL, Nitao JJ, Hanley WG, Aines R, Glaser RE, Sengupta SK, Dyer KM, Hickling TL, Daily WD (2005) Stochastic inversion of electrical resistivity changes using Markov chain Monte Carlo approach. J Geophys Res 110:B02101

    Article  Google Scholar 

  • Razilov IA, Dukhin SS (1995) Simultaneous influence of concentration polarization of the diffuse layer and polarization of the Stern layer according to the mechanism of bound counterions at arbitrary magnitudes of the relaxation parameter. Colloid J 57(3):364–371 [translated from Kolloidnyi Zhurnal 57(3):391-399]

    Google Scholar 

  • Reguera G, McCarthy KD, Metha T, Nicol JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  Google Scholar 

  • Reguera G, Kevin KP, Nicoll JS, Covalla SF, Wooddard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348

    Article  Google Scholar 

  • Reguera G, Pollina RB, Nicols JS, Lovley DR (2007) Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J Bacteriol 189(5):2125–2127

    Article  Google Scholar 

  • Revil A (1999) Ionic diffusivity, electrical conductivity, membrane and thermoelectrical potentials in colloids and granular porous media: a unified model. J Colloid Interface Sci 212:503–522

    Article  Google Scholar 

  • Revil A (2012) Spectral induced polarization of shaly sands: Influence of the electrical double layer. Water Resources Research, 48. doi:10.1029/2011WR011260

  • Revil A, Florsch N (2010) Determination of permeability from spectral induced polarization data in granular media. Geophys J Int 181:1480–1498. doi:10.1111/j.1365-246X.2010.04573.x

    Google Scholar 

  • Revil A, Jardani A (2010) Stochastic inversion of permeability and dispersivities from time lapse self-potential measurements: a controlled sandbox study. Geophys Res Lett 37:L11404. doi:10.1029/2010GL043257

    Article  Google Scholar 

  • Revil A, Linde N (2006) Chemico-electromechanical coupling in microporous media. J Colloid Interface Sci 302:682–694

    Article  Google Scholar 

  • Revil A, Skold M (2011) Salinity dependence of spectral induced polarization in sands and sandstones. Geophys J Int 187:813–824. doi:10.1111/j.1365-246X.2011.05181.x

    Article  Google Scholar 

  • Revil A, Cathles LM, Losh S, Nunn JA (1998) Electrical conductivity in shaly sands with geophysical applications. J Geophys Res 103(B10):23,925–23,936

    Google Scholar 

  • Revil A, Ehouarne L, Thyreault E (2001) Tomography of self-potential anomalies of electrochemical nature. Geophys Res Lett 28(23):4363–4366

    Article  Google Scholar 

  • Revil A, Hermitte D, Spangenberg E, Cochémé JJ (2002) Electrical properties of zeolitized volcaniclastic materials. J Geophys Res 107(B8):2168. doi:10.1029/2001JB000599

    Article  Google Scholar 

  • Revil A, Cary L, Fan Q, Finizola A, Trolard F (2005) Self-potential signals associated with preferential ground water flow pathways in a buried paleo-channel. Geophys Res Lett 32:L07401. doi:10.1029/2004GL022124

    Article  Google Scholar 

  • Revil A, Leroy P, Ghorbani A, Florsch N, Niemeijer AR (2006) Compaction of quartz sands by pressure solution using a Cole-Cole distribution of relaxation times. J Geophys Res 111:B09205. doi:10.1029/2005JB004151

    Article  Google Scholar 

  • Revil A, Linde N, Cerepi A, Jougnot D, Matthäi S, Finsterle S (2007) Electrokinetic coupling in unsaturated porous media. J Coll Interf Sci 313(1):315–327. doi:10.1016/j.jcis.2007.03.037

    Article  Google Scholar 

  • Revil A, Mendonça CA, Atekwana E, Kulessa B, Hubbard SS, Bolhen K (2010a) Understanding biogeobatteries: where geophysics meets microbiology. J Geophys Res 115:G00G02. doi:10.1029/2009JG001065

    Article  Google Scholar 

  • Revil A, Johnson TC, Finizola A (2010b) Three-dimensional resistivity tomography of Vulcan’s forge, Vulcano Island, southern Italy. Geophys Res Lett 37:L15308. doi:10.1029/2010GL043983

    Article  Google Scholar 

  • Richards K, Revil A, Jardani A, Henderson F, Batzle M, Haas A (2010) Pattern of shallow ground water flow at Mount Princeton Hot Springs, Colorado, using geoelectrical methods. J Volcanol Geotherm Res 198:217–232

    Article  Google Scholar 

  • Rijo L (1977) Modelling of electrical and electromagnetic data. PhD Thesis, Univ. of Utah

  • Rijo L (1984) Inversion of three-dimensional resistivity and induced-polarization data. 54th Ann. Int. Mtg., Soc. Expl. Geophys., Tulsa, OK, Expanded Abstracts pp–113–117

  • Rizzo E, Suski B, Revil A, Straface S, Troisi S (2004) Self-potential signals associated with pumping-tests experiments. J Geophys Res 109:B10203. doi:10.1029/2004JB003049

    Article  Google Scholar 

  • Rosen LA, Saville DA (1991) Dielectrical spectroscopy of colloidal dispersions: comparisons between experiment and theory. Langmuir 7:36–42

    Article  Google Scholar 

  • Rozycki A (2009) Evaluation of the streaming potential effect of piping phenomena using a finite cylinder model. Eng Geol 104:98–108

    Article  Google Scholar 

  • Rozycki A, Fonticiella JMR, Cuadra A (2006) Detection and evaluation of horizontal fractures in Earth dams using self-potential method. Eng Geol 82(3):145–153

    Article  Google Scholar 

  • Rubin Y, Hubbard S (2005) Hydrogeophysics. Water and Science Technology Library 50, Springer, Houten, The Netherlands

  • Rust WM (1938) A historical review of electrical prospecting methods. Geophysics 3(1):1–6

    Article  Google Scholar 

  • Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prosp 40:453–463

    Article  Google Scholar 

  • Sasaki Y (1994) 3-D resistivity inversion using the finite-element method. Geophysics 59:1839–1848

    Article  Google Scholar 

  • Sato M, Mooney HM (1960) The electrochemical mechanism of sulfide self-potentials. Geophysics 25:226–249

    Article  Google Scholar 

  • Schlumberger C (1920) Etude sur la prospection électrique du sous-sol [Study on underground electrical prospecting], Gauthier-Villars et Cie, Paris

  • Schlumberger C, Schlumberger M, Leonardon EG (1932) Electrical coring: a method of determining bottom-hole data by electrical measurements. Am Inst Min Eng Tech Pub 462, AIME, Englewood, CO

  • Schlumberger C, Schlumberger M, Leonardon EG (1933) A new contribution to subsurface studies by means of electrical measurements in drill holes. Am Inst Min Eng, Tech Pub 503 (also in 1934, Trans 110:159–182), AIME, Englewood, CO

    Google Scholar 

  • Schmutz M, Revil A, Vaudelet P, Batzle M, Femenía Viñao P, Werkema DD (2010) Influence of oil saturation upon spectral induced polarization of oil bearing sands. Geophys J Int 183:211–224. doi:10.1111/j.1365-246X.2010.04751.x

    Article  Google Scholar 

  • Schurr JM (1964) On the theory of the dielectrical dispersion of spherical colloidal particles in electrolyte solution. J Phys Chem 68:2407–2413

    Article  Google Scholar 

  • Schwarz G (1962) A theory of the low-frequency dielectrical dispersion of colloidal particles in electrolyte solution. J Phys Chem 66:2636–2642

    Article  Google Scholar 

  • Seigel HO (1959) Mathematical formulation and type curves for induced polarization. Geophysics 24:547–565

    Article  Google Scholar 

  • Seigel H, Nabighian M, Parasnis DS, Vozoff K (2007) The early history of the induced polarization method. Lead Edge 3:312–321

    Article  Google Scholar 

  • Sen PN, Goode PA (1992) Influence of temperature on electrical conductivity on shaly sands. Geophysics 57:89–96

    Article  Google Scholar 

  • Sheffer MR, Howie JA (2001) Imaging subsurface seepage conditions through the modeling of streaming potential. Proceedings of the 54th Canadian Geotechnical Conference, Calgary, AB, Canada, September, 2001, pp 1094–1101

  • Sheffer MR, Howie JA (2003) A numerical modelling procedure for the study of the streaming potential phenomenon in embankment dams. Symposium on the Application of Geophysics to Engineering and Environmental Problems, San Antonio, TX, pp 475–487

  • Sheffer MR, Oldenburg (2007) Three-dimensional modeling of streaming potential. Geophys J Int 169:839–848

    Article  Google Scholar 

  • Shilov VN, Dukhin SS (1970) Theory of low-frequency dispersion of dielectrical permittivity in suspensions of spherical colloidal particles due to double-layer polarization. Colloid J 32:245–249

    Google Scholar 

  • Sill WR (1983) Self-potential modeling from primary flows. Geophysics 48:76–86

    Article  Google Scholar 

  • Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries: a review. Surv Geophys 28(2–3):169–197

    Article  Google Scholar 

  • Slater L, Lesmes DP (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour Res 38:1213–1225

    Article  Google Scholar 

  • Slater L, Comas X, Ntarlagiannis D, Moulik MR (2007a) Resistivity-based monitoring of biogenic gases in peat soil. Water Resour Res 43(10):W10430

    Article  Google Scholar 

  • Slater L, Ntarlagiannis D, Personna YR, Hubbard SS (2007b) Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophys Res Lett 34:L21404

    Article  Google Scholar 

  • Slater L, Ntarlagiannis D, Yee N, et al. (2008) Electrodic voltages in the presence of dissolved sulfide: implications for monitoring natural microbial activity 73(2):F65–F70

  • Slob E, Snieder R, Revil A (2010) Retrieving electrical resistivity data from self-potential measurements by cross-correlation. Geophys Res Lett 37:L04308. doi:10.1029/2009GL042247

    Article  Google Scholar 

  • Smith DL (1986) Application of the pole–dipole resistivity technique to the detection of solution cavities beneath highways. Geophysics 51(3):833–837

    Article  Google Scholar 

  • Spies BR (1996) Electrical and electromagnetic borehole measurements: a review. Surv Geophys 17(4):517–556

    Article  Google Scholar 

  • Stoll J, Bigalke J, Grabner EW (1995) Electrochemical modeling of self-potential anomalies. Surv Geophys 16(1):107–120

    Article  Google Scholar 

  • Straface S, Falico C, Troisi S, Rizzo E, Revil A (2007) Estimating of the transmissivities of a real aquifer using self potential signals associated with a pumping test. Ground Water 45(4):420–428

    Article  Google Scholar 

  • Stummer P, Maurer H, Green AG (2004) Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics 69:120–139. doi:10.1190/1.1649381

    Article  Google Scholar 

  • Sumner JS (1976) Principles of induced polarization for geophysical exploration. Elsevier, Amsterdam

  • Suski B, Revil A, Titov K, Konosavsky P, Dagès C, Voltz M, Huttel O (2006) Monitoring of an infiltration experiment using the self-potential method. Water Resour Res 42:W08418. doi:10.1029/2005WR004840

    Article  Google Scholar 

  • Suzuki K, Higashi S (2001) Groundwater flow after heavy rain in landslide-slope area from 2-D inversion of resistivity monitoring data. Geophysics 66(3):733–743

    Article  Google Scholar 

  • Swan HP (2000) Dielectrical spectroscopy of biological materials and field interactions: the connection with Gerhard Schwarz. Biophys Chem 85:273–278

    Article  Google Scholar 

  • Tarasov A, Titov K (2007) Relaxation time distribution from time domain induced polarization measurements. Geophys J Int 170:31–43

    Article  Google Scholar 

  • Tezkan B (1999) A review of environmental applications of quasi-stationary electromagnetic techniques. Surv Geophys 20:279–308

    Article  Google Scholar 

  • Thomas EC (1976) Determination of QV from membrane potential measurements on shaly sands. Trans Am Inst Min Metall Petr Eng 261:1087–1096

    Google Scholar 

  • Thorstenson DC (1984) The concept of electron activity and its relation to redox potentials in aqueous geochemical systems. US Geol Surv Open File Rep 84-072, 45 pp

  • Tikhonov AN (1943) On the stability of inverse problems (in Russian). Doklady 39(5):195–198

    Google Scholar 

  • Timm F, Möller P (2001) The relation between electrical and redox potential: evidence from laboratory and field measurements. J Geochem Explor 72(2):115–128

    Article  Google Scholar 

  • Titov K, Komarov V, Tarasov A, Levitski A (2002) Theoretical and experimental study of time domain-induced polarization in water-saturated sands. J Appl Geophys 50:417–433

    Article  Google Scholar 

  • Titov K, Kemna A, Tarasov A, Vereecken H (2004) Induced polarization of unsaturated sands determined through time-domain measurements. Vadose Zone J 3:1160–1168

    Google Scholar 

  • Titov K, Revil A, Konasovsky P, Straface S, Troisi S (2005) Numerical modeling of self-potential signals associated with a pumping test experiment. Geophys J Int 162:641–650

    Article  Google Scholar 

  • Tong M, Li L, Wang W, Jiang Y (2006a) Determining capillary-pressure curve, pore size distribution and permeability from induced polarization of shaley sand. Geophysics 71:N33–N40

    Article  Google Scholar 

  • Tong M, Li L, Wang W, Jiang Y (2006b) A time-domain induced-polarization method for estimating permeability in a shaly sand reservoir. Geophys Prospect 54:623–631

    Article  Google Scholar 

  • Tsourlos PI (1995) Modeling, interpretation and inversion of multielectrode resistivity survey data. PhD Thesis, University of York, UK

  • Ullrich B, Günther T, Rücker C (2007) Electrical resistivity tomography methods for archaeological prospection. In: Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Berlin, Germany, April 26, 2007

  • Ulrich C, Slater LD (2004) Induced polarization measurements on unsaturated, unconsolidated sands. Geophysics 69(3):762–771

    Article  Google Scholar 

  • Vanderborght J, Kemna A, Hardelauf H, Vereecken H (2005) Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: a synthetic case study. Water Resour Res 41:W06013. doi:10.1029/2004WR003774

    Article  Google Scholar 

  • Vanhala H (1997) Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method. Geophys Prospect 45:303–326

    Article  Google Scholar 

  • Vanhala H, Soininen H, Kukkonen I (1992) Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment. Geophysics 57:1014–1017

    Article  Google Scholar 

  • Vaudelet P, Schmutz M, Revil A, Franceschi M, Bégassat P (2011a) Induced polarization signature of the presence of copper in saturated sands. Water Resour Res 47:W02526. doi:10.1029/2010WR009310

    Article  Google Scholar 

  • Vaudelet P, Revil A, Schmutz M, Franceschi M, Bégassat P (2011b) Changes in induced polarization associated with the sorption of sodium, lead, and zinc on silica sands. J Colloid Interface Sci 360:739–752

    Article  Google Scholar 

  • Vinegar HJ, Waxman MH (1982) Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain. US Patent no. 4,359,687, Shell, Houston, TX

    Google Scholar 

  • Vinegar HJ, Waxman MH (1984) Induced polarization of shaly sands. Geophysics 49:1267–1287

    Article  Google Scholar 

  • Wait JR (1959) The variable-frequency method. In: Wait JR (ed) Overvoltage research and geophysical applications. Pergamon, New York, pp 29–49

  • Ward S (1990) Resistivity and induced polarization methods. Investigations in Geophysics no. 5. In: Ward S (ed) Geotechnical and environmental geophysics I. SEG, Tulsa, OK, pp 147–189

    Chapter  Google Scholar 

  • Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing sands. Soc Pet Eng J 8:107–122

    Google Scholar 

  • Waxman MH, Thomas EC (1974) Electrical conductivities in shaly sands: part 1—the relation between hydrocarbon saturation and resistivity index; part 2—the temperature coefficient of electrical conductivity. J Pet Technol 26:213–225

    Google Scholar 

  • Weller A, Seichter M, Kampke A (1996) Induced-polarization modelling using complex electrical conductivities. Geophys J Int 127:387–398

    Article  Google Scholar 

  • Weller A, Brune S, Hennig T, Kansy A (2000) Spectral induced polarization at a medieval smelting site. In: Proceedings of the 6th Meeting, Environmental and Engineering. Geophysics (EEGS-ES) EL11, Bochum, Germany, September 2000

  • Wenner F (1912) The four-terminal conductor and the Thomson Bridge. US Bur Standards Bull 8:559–610

    Google Scholar 

  • Wenner F (1915) A method of measuring earth resistivity. US Bur Standards Bull 12:469–478

    Google Scholar 

  • Williams KH, Ntarlagiannis D, Slater LD, Dohnalkova A, Hubbard SS, Banfield JF (2005) Geophysical imaging of stimulated microbial biomineralization. Environ Sci Technol 39:7592–7600

    Article  Google Scholar 

  • Williams KH, Kemna A, Wilkins MJ, Druhan J, Arntzen E, N’Guessan AL, Long PE, Hubbard SS, Banfield JF (2009) Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environ Sci Technol 43:6717–6723. doi:10.1021/es900855j

    Article  Google Scholar 

  • Williams KH, N’Guessan AL, Druhan J, Long PE, Hubbard SS, Lovley DR, Banfield JF (2010) Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer. J Geophys Res Biogeosci 115:G00G05. doi:10.1029/2009JG001142

    Article  Google Scholar 

  • Wilt MJ, Corwin RF (1989) Numerical modeling of self-potential anomalies due to leaky dams: model and field examples. In: Merkler GP (ed) Detection of subsurface flow phenomena. Lecture Notes in Earth Sciences, 27, pp 73–89, Springer, Berlin

  • Wishart DN, Slater LD, Gates AE (2006) Self-potential improves characterization of hydraulically-active fractures from azimuthal geoelectrical measurements. Geophys Res Lett 33:L17314. doi:10.1029/2006GL027092

    Article  Google Scholar 

  • Wong PZ (1987) Fractal surface in porous media. In: Banavar JR, Koplik J, Winkler KW (eds) Physics and chemistry of porous media, vol 2. Conference Proceedings Am Inst Phys 154, AIP, College Park, MD, pp 304–318

  • Woodruff WF, Revil A, Jardani A, Nummedal D, Cumella S (2010) Stochastic inverse modeling of self-potential data in boreholes. Geophys J Int 183:748–764. doi:10.1111/j.1365-246X.2010.04770.x

    Article  Google Scholar 

  • Xu S-Z, Zhao S, Ni Y (1998) A boundary element method for 2-D DC resistivity modeling with a point current source. Geophysics 63:399–404

    Article  Google Scholar 

  • Yeh TCJ, Liu S, Glass RJ, Baker K, Brainard JR, Alumbaugh D, LaBrecque D (2002) A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resour Res 38(12):1278

    Article  Google Scholar 

  • Yoon JR, Lee K, Kwon BD, Han WS (2003) Geoelectrical surveys of the Nanjido waste landfill in Seoul, Korea. Environ Geol 43:654–666

    Google Scholar 

  • Yungul SH (1950) Interpretation of spontaneous polarization anomalies caused by spheroidal ore bodies. Geophysics 15:237–246

    Article  Google Scholar 

  • Zhang J, Mackie RL, Madden TR (1995) 3-D resistivity forward modeling and inversion using conjugate gradients. Geophysics 60:1313–1325

    Article  Google Scholar 

  • Zhou B, Greenhalgh SA (2000) Cross-hole resistivity tomography using different electrode configurations. Geophys Prospect 48:887–912

    Article  Google Scholar 

  • Zukoski CF, Saville DA (1986a) The interpretation of electrokinetic measurements using a dynamic model of the Stern layer: I, the dynamic model. J Colloid Interface Sci 114(1):32–44

    Article  Google Scholar 

  • Zukoski CF, Saville DA (1986b) The Interpretation of electrokinetic measurements using a dynamic model of the Stern layer: II, comparisons between theory and experiments. J Colloid Interface Sci 114(1):45–53

    Article  Google Scholar 

Download references

Acknowledgements

We thank NSF for funding the SmartGeo Educational Program (Project IGERT: Intelligent Geosystems; DGE-0801692) and EPA (D. Werkema) for funding M. Karaoulis. We thank A. Flores Orozco and K. H. Williams for sharing Fig. 23 with us and M. Nabighian for bringing to our attention key references about early works. K. Singha, L. Slater, and two anonymous referees are thanked for their careful and very useful reviews of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Revil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revil, A., Karaoulis, M., Johnson, T. et al. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20, 617–658 (2012). https://doi.org/10.1007/s10040-011-0819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0819-x

Keywords

Navigation