Skip to main content
Log in

Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries—A Review

  • Original Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This paper reviews the recent geophysical literature addressing the estimation of saturated hydraulic conductivity (K) from static low frequency electrical measurements (electrical resistivity, induced polarization (IP) and spectral induced polarization (SIP)). In the first part of this paper, research describing how petrophysical relations between electrical properties and effective (i.e. controlling fluid transport) properties of (a) the interconnected pore volumes and interconnected pore surfaces, have been exploited to estimate K at both the core and field scale is reviewed. We start with electrical resistivity measurements, which are shown to be inherently limited in K estimation as, although resistivity is sensitive to both pore volume and pore surface area properties, the two contributions cannot be separated. Efforts to utilize the unique sensitivity of IP and SIP measurements to physical parameters that describe the interconnected pore surface area are subsequently introduced and the incorporation of such data into electrical based Kozeny–Carman type models of K estimation is reviewed. In the second part of this review, efforts to invert geophysical datasets for spatial patterns of K variability (e.g. aquifer geometries) at the field-scale are considered. Inversions, based on the conversion of an image of a geophysical property to a hydrological property assuming a valid petrophysical relationship, as well as joint/constrained inversion methods, whereby multiple geophysical and hydrological data are inverted simultaneously, are briefly covered. This review demonstrates that there currently exists an opportunity to link, (1) the petrophysics relating low frequency electrical measurements to effective hydraulic properties, with (2) the joint inversion strategies developed in recent years, in order to obtain more meaningful estimates of spatial patterns of K variability than previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. From this point on, electrical conductivity, rather than resistivity, is used as it is more directly related to the charge conduction and storage processes occurring in porous media.

References

  • Ambegaokar V, Halperin BI, Langer JS (1971) Hopping conductivity in disordered systems. Phys Rev B 4:2612–2620

    Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. T Am Inst Mineral Metall Petrol Eng 146:54–62

    Google Scholar 

  • Barlebo HC, Hill MC, Rosberg D (2004) Investigating the macrodispersion experiment (MADE) site in Columbus, Mississippi, using a three-dimensional inverse flow and transport model. Water Resour Res 40:W04211, doi:10.1029/2002WR001935

    Google Scholar 

  • Berg RR (1970) Method for determining permeability from reservoir rock properties. T Gulf Coast Assoc Geol Soc 20:303–317

    Google Scholar 

  • Bernabé Y, Revil A (1995) Pore-scale heterogeneity, energy dissipation and the transport properties of rocks. Geophys Res Lett 22(12):1529–1532

    Google Scholar 

  • Binley A, Kemna A (2005) Electrical methods. In: Rubin Y, Hubbard S (eds) Hydrogeophysics. Springer, The Netherlands, pp 129–156

    Google Scholar 

  • Binley A, Slater L, Fukes M, Cassiani G (2005) The relationship between frequency dependent electrical conductivity and hydraulic properties of saturated and unsaturated sandstone. Water Resour Res 41:W12417

    Google Scholar 

  • Binley A, Winship P, Middleton R, Pokar M, West J (2001) High resolution characterization of vadose zone dynamics using cross-borehole radar. Water Resour Res 37(11):2639–2652

    Google Scholar 

  • Binley A, Cassiani G, Middleton R, Winship P (2002) Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. J Hydrol 267:147–159

    Google Scholar 

  • Birch FS (1993) Testing Fournier’s method for finding water table from self-potential. Ground Water 31:50–56

    Google Scholar 

  • Börner FD, Schön JH (1991) A relation between the quadrature component of electrical conductivity and the specific surface area of sedimentary rocks. Log Analyst 32:612–613

    Google Scholar 

  • Börner FD, Schopper JR, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys Prospect 44:583–602

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Google Scholar 

  • Butler JJ (1998) The design, performance and analysis of slug tests. Lewis Publications

  • Butler JJ (2005) Hydrogeological methods for estimation of hydraulic conductivity In: Rubin Y, Hubbard S (eds) Hydrogeophysics. Springer, The Netherlands, pp 23–58

    Google Scholar 

  • Butler JJ, Healey JM, Zheng L, McCall W, Garnett EJ, Loheide II SP (2002) Hydraulic tests with direct-push equipment. Ground Water 40:26–36

    Google Scholar 

  • Butler JJ, McElwee CD, Bohling GC (1999) Pumping tests in networks of multilevel sampling wells: methodology and implications for hydraulic tomography. Water Resour Res 35(11):3553–3560

    Google Scholar 

  • Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29:263–273

    Google Scholar 

  • Chelidze TL, Gueguen Y (1999) Electrical spectroscopy of porous rocks: a review – I. Theoretical models. Geophys J Int 137:1–15

    Google Scholar 

  • Chen J, Hubbard SS, Rubin Y (2001) Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model. Water Resour Res 37(6):1603–1613

    Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics, vol. I. Alternating current field. J Chem Phys 9:341–351

    Google Scholar 

  • Copty N, Rubin Y, Mavko G (1993) Geophysical-hydrological identification of field permeabilities through Bayesian updating. Water Resour Res 29(8):2813–2825

    Google Scholar 

  • Day-Lewis FD, Lane JW Jr (2004) Assessing the resolution-dependent utility of tomograms for geostatistics. Geophys Res Lett 31:L07503, doi:10.1029/2004GL019617

    Google Scholar 

  • Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442

    Google Scholar 

  • Day-Lewis FD, Lane JW, Harris JM, Gorelick SM (2003) Time-lapse imaging of saline-tracer transport in fractured rock using difference-attenuation tomography. Water Resour Res 39(10):1290, doi:10.1029/2004JB003569

    Google Scholar 

  • Day-Lewis FD, Singha K, Binley AM (2005) Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations. J Geophys Res 110:B08206, doi:10.1029/2004JB003569

    Google Scholar 

  • de Lima OAL, Niwas S (2000) Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. J Hydrol 235:12–26

    Google Scholar 

  • de Lima OAL, Sharma MM (1990) A grain conductivity approach to shaly sands. Geophysics 50:1347–1356

    Google Scholar 

  • de Lima OAL, Sharma MM (1992) A generalized Maxwell-Wagner theory for membrane polarization in shaly sands. Geophysics 57:431–440

    Google Scholar 

  • Fournier C (1989) Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: case history of the Chaîne des Puys (Puy-de-Dôrne, France). Geophys Prospect 37:647–668

    Google Scholar 

  • Frohlich RK, Fisher JJ, Summerly E (1996) Electric-hydraulic conductivity correlation in fractured crystalline bedrock: Central Landfill, Rhode Island, USA. J Appl Geophys 35:249–259

    Google Scholar 

  • Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys Res Lett 30(13):1658, doi:10.1029/2003GL017370

    Google Scholar 

  • Gallardo LA, Meju MA (2004) Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradient constraints. J Geophys Res 109:B03311, doi: 10.1029/2003JB002716

    Google Scholar 

  • Gassman F (1951) Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96:1–23

    Google Scholar 

  • Gottlieb J, Dietrich P (1995) Identification of the permeability distribution in soil by hydraulic tomography. Inverse Probl 11:353–360

    Google Scholar 

  • Haber E, Oldenburg D (1997) Joint inversion: a structural approach. Inverse probl 13(1):63–77

    Google Scholar 

  • Hallbauer-Zadorozhnaya V, Bessonov A (2002) The IP effect in TEM soundings applied to a study of groundwater pollution by hydrocarbon compounds in Saratov, Russia. Eur J Environ Eng Geophys 7:239–264

    Google Scholar 

  • Hazen A (1911) Discussion: dams on sand foundations. T Am Soc Civil Eng 73:199

    Google Scholar 

  • Heigold PC, Gilkeson RH, Cartwright K, Reed PC (1979) Aquifer transmissivity from surficial electrical methods. Ground Water 17:338–345

    Google Scholar 

  • Hess KM, Wolf SH, Celia MA (1992) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour Res 28:2011–2027

    Google Scholar 

  • Hördt A, Blaschek R, Kemna A, Zisser N (2006) Hydraulic conductivity estimation from induced polarization data at the field scale – the Krauthausen case history. J Appl Geophys (in press)

  • Hubbard SS, Chen J, Peterson J, Mayer EL, Williams KH, Swift DJ, Mailloux B, Rubin Y (2001) Hydrogeological characterization of the South Oyster Bacterial Transport Site using geophysical data. Water Resour Res 37(10):2431–2456

    Google Scholar 

  • Hubbard SS, Rubin Y, Majer EL (1999) Spatial correlation structure estimation using geophysical and hydrological data. Water Resour Res 35(6):1809–1825

    Google Scholar 

  • Huntley D (1986) Relations between permeability and electrical resistivity in granular aquifers. Ground Water 24:466–474

    Google Scholar 

  • Hyndman DW, Gorelick SM (1996) Estimating lithologic and transport properties in three dimensions using seismic and tracer data: the Kesterton aquifer. Water Resour Res 32(9):2659–2670

    Google Scholar 

  • Hyndman DW, Harris JM, Gorelick SM (1994) Coupled seismic and tracer test inversion for aquifer property characterization. Water Resour Res 30(7):1965–1977

    Google Scholar 

  • Hyndman DW, Harris JW, Gorelick SM (2000) Inferring the relation between seismic slowness and hydraulic conductivity in heterogeneous aquifers. Water Resour Res 36(8):2121–2132

    Google Scholar 

  • Johnson DL, Koplick J, Schwartz LM (1986) New pore-size parameter controlling transport in porous media. Phys Rev Lett 57(20):2564–2567

    Google Scholar 

  • Katz AJ, Thompson AH (1985) Fractal sandstone pores: implications for conductivity and pore formation. Phys Rev Lett 54:1325–1328

    Google Scholar 

  • Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34(11):8179–8181

    Google Scholar 

  • Kelly WE (1977) Geoelectric sounding for estimating aquifer hydraulic conductivity. Ground Water 15(6):420–425

    Google Scholar 

  • Kelly WE, Reiter PE (1984) Influence of anisotropy on relations between aquifer hydraulic and electrical properties. J Hydrol 74:311–321

    Google Scholar 

  • Kemna A (2000) Tomographic inversion of complex resistivity – theory and application. Der Andere Verlag, Osnabrück, Germany, 176 pp

    Google Scholar 

  • Kemna A, Binley A, Slater L (2004) Cross-borehole IP imaging for engineering and environmental applications. Geophysics 69:97–107

    Google Scholar 

  • Kemna A, Munch HM, Titov K, Zimmermann E, Vereecken H (2005) Relation of SIP relaxation time of sands to salinity, grain size and hydraulic conductivity. Extended Abstracts: Near Surface 2005 – 11th European Meeting of Environmental and Engineering Geophysics P054:4 pp

  • Kemna A, Vanderborght J, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146

    Google Scholar 

  • Klein JD, Sill WR (1982) Electrical properties of artificial clay-bearing sandstones:. Geophysics 47:1593–1605

    Google Scholar 

  • Knight R, Nur A (1987) The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophysics 52(5):644–654

    Google Scholar 

  • Korringa J, Seevers DO, Torrey HC (1962) Theory of spin pumping and relaxation in systems with low concentration of electron spin resonance centers. Phys Rev 127(4):1143–1150

    Google Scholar 

  • Kosinski WK, Kelly WE (1981) Geoelectric soundings for predicting aquifer properties. Ground Water 19:163–171

    Google Scholar 

  • Kowalsky MB, Chen J, Hubbard SS (2006) Joint inversion of geophysical and hydrological data for improved subsurface characterization. The Leading Edge, June: 730–734

  • Kowalsky MB, Finsterle S, Rubin Y (2004) Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Adv Water Resour 27:583–599

    Google Scholar 

  • Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss Wien Math Naturwiss Kl Abt 1(136):271–306

    Google Scholar 

  • Lesmes DP, Frye KM (2001) The influence of pore fluid chemistry on the complex conductivity and induced-polarization responses of Berea sandstone. J Geophys Res 106(B3): 4079–4090

    Google Scholar 

  • Lesmes DP, Friedman SP (2005) Relationships between the electrical and hydrogeological properties of rocks and soils. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics, Chap. 4. Springer, Dordrecht, The Netherlands, pp 87–128

    Google Scholar 

  • Lesmes DP, Morgan FD (2001) Dielectric spectroscopy of sedimentary rocks. J Geophys Res 106(B7): 13329–13346

    Google Scholar 

  • Linde N, Chen J, Kowalsky MB, Hubbard S (2006a) Hydrogeophysical parameter estimation approaches for field scale characterization In: Vereecken H et al (eds) Applied Hydrogeophysics, Chap. 2. Springer, Dordrecht, The Netherlands, pp 9–44

  • Linde N, Finsterle S, Hubbard SS (2006b) Inversion of tracer test data using tomographic constraints. Water Resour Res 42:W04410, doi:10.1029/2004WR003806

    Google Scholar 

  • Linde N, Binley A, Tryggvason A, Pedersen L, Revil A (2006c) Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resour Res 42:W12404, doi:10.1029/2006WR005131

    Google Scholar 

  • Lines LR, Schultz AK, Treitel S (1988) Cooperative inversion of geophysical data. Geophysics 53(1):8–20

    Google Scholar 

  • Liu S, Jim Yeh TC, Gardiner R (2002) Effectiveness of hydraulic tomography: Sandbox experiments. Water Resour Res 38:10.1029/2001WR000338

    Google Scholar 

  • Meier PM, Carrera J, Sánchez-Vila X (1998) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resour Res 34:1011–1026

    Google Scholar 

  • Meier PM, Medina A, Carrera J (2001) Geostatistical inversion of cross-hole pumping tests for identifying preferential flow channels within a shear zone. Ground Water 39:10–17

    Google Scholar 

  • Mazac O, Landa I (1979) On determination of hydraulic conductivity and transmissivity of aquifers by vertical electric sounding. J Geol Sci 16:123–129

    Google Scholar 

  • Moysey S, Singha K, Knight R (2005) A framework for inferring field-scale rock physics relationships through numerical simulation. Geophys Res Lett 32:L08304, doi:10.1029/2004GL022152

    Google Scholar 

  • Nobes DC (1996) Troubled waters: Environmental applications of electrical and electromagnetic methods. Surveys Geophys 17:393–454

    Google Scholar 

  • Olhoeft GR (1985) Low-frequency electrical properties. Geophysics 50:2492–2503

    Google Scholar 

  • Paasche H, Tronicke J, Holliger K, Green AG, Muarer H (2006) Integration of diverse physical-property models: subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses. Geophysics 71(3):H33–H44

    Google Scholar 

  • Pape H, Vogelsang D (1996) Fractal evaluation of induced polarization logs in the KTB-Oberpfalz HB. Bundesanstalt für Geowissenschaften und Rohstoffe/Geologische Landesaemter in der Bundesrepublik Deutschland. Geologisches Jahrbuch 54(E):3–27

    Google Scholar 

  • Pape H, Riepe L, Schopper JR (1982) A pigeon-hole model for relating permeability to specific surface. Log Analyst 23:5–13

    Google Scholar 

  • Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surv Geophys 23:101–132

    Google Scholar 

  • Pelton WH, Ward SH, Hallof PG, Sill WR, Nelson PH (1978) Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 43:588–609

    Google Scholar 

  • Ponzini G, Ostroman A, Molinari M (1983) Empirical relation between electrical transverse resistance and hydraulic transmissivity. Geoexploration 22:1–15

    Google Scholar 

  • Pride S (1994) Governing equations for the coupled electromagnetics and acoustics of porous media. Phys Rev B 50(21):15678–15696

    Google Scholar 

  • Pride SR (2005) Relationships between seismic and hydrological properties. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics, Chap. 9. Springer, Dordrecht, The Netherlands, pp 87–128

    Google Scholar 

  • Purvance DT, Andricevic R (2000a) Geoelectric characterization of the hydraulic conductivity field and its spatial structure at variable scales. Water Resour Res 36(10):2915–2924

    Google Scholar 

  • Purvance DT, Andricevic R (2000b) On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36:2905–2913

    Google Scholar 

  • Rehfeldt KR, Boggs JM, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer, 3: geostatistical analysis of hydraulic conductivity. Water Resour Res 28:3309–3324

    Google Scholar 

  • Renard PH, Marsily G de (1997) Calculating equivalent permeability: a review. Adv Water Resour 20(5–6):253–278

    Google Scholar 

  • Revil A, Cathles LMI (1999) Permeability of shaly sands. Water Resour Res 35(3):651–662

    Google Scholar 

  • Revil A, Glover PWJ (1998) Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophys Res Lett 25(5):691–694

    Google Scholar 

  • Revil A, Titov K, Doussan C, Lapenna V (2006) Applications of the self-potential method to hydrogeological problems. In: Vereecken H et al (eds) Applied hydrogeophysics, Chap. 9. Springer, Dordrecht, The Netherlands, pp 255–292

  • Rubin Y, Hubbard SS (2005) Introduction to hydrogeophysics. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics, Chap. 1. Springer, Dordrecht, The Netherlands, pp 3–21

    Google Scholar 

  • Rubin Y, Mavko G, Harris J (1992) Mapping permeability in heterogeneous aquifers using hydrologic and seismic data. Water Resour Res 28(7):1809–1816

    Google Scholar 

  • Sánchez-Vila X, Girardi JP, Carrera J (1995) A synthesis of approaches to upscaling of hydraulic conductivities. Water Resour Res 31:867–882

    Google Scholar 

  • Sánchez-Vila X, Guadagnini A, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44:RG3002

    Google Scholar 

  • Scheidegger AE (1974) The physics of flow through porous media. University of Toronto Press, Toronto

    Google Scholar 

  • Schön JH (1996) Physical properties of rocks – fundamentals and principles of petrophysics. Handbook of geophysical exploration: seismic exploration, 18. Pergamon Press, 583 pp

  • Schwarz G (1962) A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. J Phys Chem 66(12):2636–2642

    Google Scholar 

  • Scott JBT (2006) The origin of the low-frequency electrical polarization in sandstones. Geophysics 71(5):G235–G238

    Google Scholar 

  • Scott JBT, Barker RD (2003) Determining throat size in Permo-Triassic sandstones from low frequency electrical spectroscopy. Geophys Res Lett GL012951:30

    Google Scholar 

  • Scott JBT, Barker RD (2005) Characterization of sandstone by electrical spectroscopy for stratigraphical and hydrogeological investigations. Q J Eng Geol Hydrogeol 38:143–154

    Google Scholar 

  • Sen PN, Scala C, Cohen MH (1981) A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46:781–795

    Google Scholar 

  • Singha K, Gorelick SM (2005) Saline tracer visualized with three-dimensional electrical resistivity tomography: field-scale spatial moment analysis. Water Resour Res 41(W05023), doi:10.1029/2004WR003460

  • Slater L, Glaser D (2003) Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization. Geophysics 68(5):1547–1558

    Google Scholar 

  • Slater L, Lesmes DP (2002a) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour Res 38(10):1213

    Google Scholar 

  • Slater L, Lesmes DP (2002b) IP interpretation in environmental investigations. Geophysics 67:77–88

    Google Scholar 

  • Slater L, Binley A, Daily W, Johnson R (2000) Cross-hole ERT imaging of a controlled tracer injection. J Appl Geophys 44:85–102

    Google Scholar 

  • Slater L, Ntarlagiannis D, Wishart D (2006) On the relationship between induced polarization and surface area in metal-sand and clay-sand mixtures. Geophysics 71(2):A1–A5

    Google Scholar 

  • Straley C, Rossini D, Vinegar H, Tutunjian P, Morriss C (1995) Core analysis by low-field NMR. Log Analyst 38(2):84–94

    Google Scholar 

  • Sturrock JT, Lesmes DP, Morgan FD (1998) The influence of micro-geometry on the hydraulic permeability and the induced polarization response of sandstones. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), pp 859–867

  • Sturrock JT, Lesmes DP, Morgan FD (1999) Permeability estimation using spectral induced polarization measurements. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), pp 409–416

  • Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role with the dispersion process. Water Resour Res 22:2069–2082

    Article  Google Scholar 

  • Tezkan B (1999) A review of environmental applications of quasi-stationary electromagnetic techniques. Surv Geophys 20:279–308

    Google Scholar 

  • Thompson AH, Katz AJ, Krohn CE (1987) The microgeometry and transport properties of sedimentary rock. Adv Phys 36:624–694

    Google Scholar 

  • Titov K, Kemna A, Tarasov A, Vereecken H (2004) Induced polarization of unsaturated sands determined through time domain measurements. Vadose Zone J 3:1160–1168

    Article  Google Scholar 

  • Titov K, Komarov V, Tarasov V, Levitski A (2002) Theoretical and experimental study of time domain-induced polarization in water-saturated sands. J Appl Geophys 50(4):417–433

    Google Scholar 

  • Urish D (1981) Electrical resistivity-hydraulic conductivity relationships in glacial outwash aquifers. Water Resour Res 17(5):1401–1408

    Google Scholar 

  • Van Brakel J, Modry S, Stava M (1981) Mercury porosimetry: state of the art. Powder Technol 29:1–12

    Google Scholar 

  • Vanderborght J, Kemna A, Hardelauf H, Vereecken H (2005) Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: a synthetic case study. Water Resour Res 41:W06013, doi:10.1029/2004WR003774

    Google Scholar 

  • Vinegar HJ, Waxman MH (1984) Induced polarization of shaly sands. Geophysics 49:1267–1287

    Google Scholar 

  • Vozoff K, Jupp DLB (1975) Joint inversion of geophysical data. Geophys J R Astron Soc 42:977–991

    Google Scholar 

  • Wait JR (1982) Geo-electromagnetism. Academic Press

  • Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing shaly sands. Trans Am Inst Mineral Metall Petrol Eng 243(2):107–122

    Google Scholar 

  • Weller A, Börner FD (1996) Measurements of spectral induced polarization for environmental purposes. Environ Geol 27:329–334

    Google Scholar 

  • Wharton RP, Hazen GA, Rau RN, Best DL (1980) Electromagnetic propagation logging: advances in technique and interpretation. Society of Petroleum Engineers, Paper No. 9267

  • Wong J (1979) An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores. Geophysics 44:1245–1265

    Google Scholar 

  • Yaramanci U, Kemna A, Vereecken H (2005) Emerging technologies in hydrogeophysics. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics, Chap. 16. Springer, Dordrecht, The Netherlands, pp 467–486

    Google Scholar 

  • Yeh TC, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36:2095–2106

    Google Scholar 

Download references

Acknowledgments

The review comments of Niklas Linde and an anonymous reviewer served to greatly improve the clarity of this paper. Andrew Binley, Andreas Kemna and David Lesmes provided valuable review comments on an earlier version of this manuscript submitted to the 18th Electromagnetic Induction in the Earth Workshop (EMIW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Slater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slater, L. Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries—A Review. Surv Geophys 28, 169–197 (2007). https://doi.org/10.1007/s10712-007-9022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-007-9022-y

Keywords

Navigation