Skip to main content

Advertisement

Log in

Investigation of Fiber Surface Treatment Effect on Thermal, Mechanical and Acoustical Properties of Date Palm Fiber-Reinforced Cementitious Composites

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

High energy consumption in the building sector appeals for the implementation and the improvement of innovative approaches with low-environmental impact. The development of eco-friendly composites as insulating materials in buildings provides practical solutions for reducing energy consumption. Different mass proportions (2.5%, 10%, and 20%) of untreated and chemically treated palm fibers were mixed with (cement, water and sand) so as to prepare novel composites. Composites were characterized by measuring water absorption, thermal conductivity, compressive strength and acoustic transmission. The results reveal that the incorporation of untreated and chemically treated date palm fibers reduces novel composites’ thermal conductivity and the mechanical resistance. Thermal measurements have proved that the loading of fibers in composites decreases the thermal conductivity from 1.38 W m−1 K−1 for the reference material to 0.31 W m−1 K−1 for composites with 5% of treated and untreated fibers. The acoustical insulation capacity of untreated palm fiber-reinforced composites (DPF) was the highest at 20% fiber content, whereas treated palm fiber-reinforced composites (TPF) had the highest sound insulation coefficient for fiber content lower than 10%. Compressive strength, thermal conductivity and density correlation showed that only chemically treated fiber-reinforced composites (TPF) are good candidates for thermal and acoustic building insulations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sripaiboonkij, P., Sripaiboonkij, N., Phanprasit, W., Jaakkola, M.S.: Respiratory and skin health among glass microfiber production workers: a cross-sectional study. Environ. Health 8, 1–10 (2009). https://doi.org/10.1186/1476-069X-8-36

    Article  Google Scholar 

  2. Sellami, A., Merzoud, M., Amziane, S.: Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Constr. Build. Mater. 47, 1117–1124 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.073

    Article  Google Scholar 

  3. Tonoli, G.H.D., Belgacem, M.N., Siqueira, G., Bras, J., Savastano, H., Rocco Lahr, F.A.: Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem. Concr. Compos. 37, 68–75 (2013). https://doi.org/10.1016/j.cemconcomp.2012.12.004

    Article  Google Scholar 

  4. Pickering, K.L., Efendy, M.G.A., Le, T.M.: A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 83, 98–112 (2016). https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  Google Scholar 

  5. Lahouioui, M., Fois, M., Ben Arfi, R., Ibos, L., Ghorbal, A.: Experimental investigation of palm fiber surface treatment effect on thermal, acoustical, and mechanical properties of a new bio-composite. In: Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. pp. 1577–1579 (2018)

  6. Sudin, R., Swamy, N.: Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J. Mater. Sci. 41, 6917–6924 (2006). https://doi.org/10.1007/s10853-006-0224-3

    Article  Google Scholar 

  7. Stefanidou, M., Anastasiou, E., Mantziou, O., Mpougla, E., Vasiliou, E., Konti, P.D., Antoniadis, K.: Incorporation of glass particles in high-performance mortars. Waste Biomass Valoriz. 7, 879–883 (2016). https://doi.org/10.1007/s12649-016-9501-9

    Article  Google Scholar 

  8. Wang, J., Hu, Y.: Novel particleboard composites made from coir fiber and waste banana stem fiber. Waste Biomass Valoriz. 7, 1447–1458 (2016). https://doi.org/10.1007/s12649-016-9523-3

    Article  Google Scholar 

  9. Ohenoja, K., Wigren, V., Österbacka, J., Illikainen, M.: Applicability of fly ash from fluidized bed combustion of peat, wood, or wastes to concrete. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-019-00615-y

    Article  Google Scholar 

  10. Panyakaew, S., Fotios, S.: New thermal insulation boards made from coconut husk and bagasse. Energy Build. 43, 1732–1739 (2011). https://doi.org/10.1016/j.enbuild.2011.03.015

    Article  Google Scholar 

  11. Essabir, H., Hilali, E., Elgharad, A., Minor, H.El, Imad, A., Elamraoui, A., Al Gaoudi, O.: Materials and design mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater. Des. 49, 442–448 (2013). https://doi.org/10.1016/j.matdes.2013.01.025

    Article  Google Scholar 

  12. Morel, J.C., Mesbah, A., Oggero, M., Walker, P.: Building houses with local materials: means to drastically reduce the environmental impact of construction. Build. Environ. 36, 1119–1126 (2001). https://doi.org/10.1016/S0360-1323(00)00054-8

    Article  Google Scholar 

  13. Hamza, S., Saad, H., Charrier, B., Ayed, N., Bouhtoury, F.C.: Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Ind. Crops Prod. 49, 357–365 (2013). https://doi.org/10.1016/j.indcrop.2013.04.052

    Article  Google Scholar 

  14. Ali, M.E., Alabdulkarem, A.: On thermal characteristics and microstructure of a new insulation material extracted from date palm trees surface fibers. Constr. Build. Mater. 138, 276–284 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.012

    Article  Google Scholar 

  15. Laborel, A., Camille, P., Jean, M., Aubert, E.: Characterization of barley straw, hemp shiv and corn cob as resources for bioaggregate based building materials. Waste Biomass Valoriz. 9, 1095–1112 (2018). https://doi.org/10.1007/s12649-017-9895-z

    Article  Google Scholar 

  16. Chabriac, P.A., Gourdon, E., Gle, P., Fabbri, A., Lenormand, H.: Agricultural by-products for building insulation: acoustical characterization and modeling to predict micro-structural parameters. Constr. Build. Mater. 112, 158–167 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.162

    Article  Google Scholar 

  17. Bassyouni, M., Ul Hasan, S.W.: The use of rice straw and husk fibers as reinforcements in composites. (2015)

  18. Berardi, U., Iannace, G.: Acoustic characterization of natural fibers for sound absorption. Build. Environ. 94, 840–852 (2015). https://doi.org/10.1016/j.buildenv.2015.05.029

    Article  Google Scholar 

  19. Alawar, A., Hamed, A.M., Al-Kaabi, K.: Characterization of treated date palm tree fiber as composite reinforcement. Compos. Part B Eng. 40, 601–606 (2009). https://doi.org/10.1016/j.compositesb.2009.04.018

    Article  Google Scholar 

  20. Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R.: Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose 23, 2905–2916 (2016). https://doi.org/10.1007/s10570-016-1005-z

    Article  Google Scholar 

  21. Arrakhiz, F.Z., Elachaby, M., Bouhfid, R., Vaudreuil, S., Essassi, M., Qaiss, A.: Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater. Des. 35, 318–322 (2012). https://doi.org/10.1016/j.matdes.2011.09.023

    Article  Google Scholar 

  22. Ajouguim, S., Abdelouahdi, K., Waqif, M., Stefanidou, M., Saâdi, L.: Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose (2018). https://doi.org/10.1007/s10570-018-2181-9

    Article  Google Scholar 

  23. Panesar, D.K., Shindman, B.: The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cem. Concr. Compos. 34, 982–992 (2012). https://doi.org/10.1016/j.cemconcomp.2012.06.003

    Article  Google Scholar 

  24. El-Abbassi, F.E., Assarar, M., Ayad, R., Lamdouar, N.: Effect of alkali treatment on Alfa fibre as reinforcement for polypropylene based eco-composites: mechanical behaviour and water ageing. Compos. Struct. 133, 451–457 (2015). https://doi.org/10.1016/j.compstruct.2015.07.112

    Article  Google Scholar 

  25. Benmansour, N., Agoudjil, B., Gherabli, A., Kareche, A., Boudenne, A.: Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 81, 98–104 (2014). https://doi.org/10.1016/j.enbuild.2014.05.032

    Article  Google Scholar 

  26. Chikhi, M., Agoudjil, B., Boudenne, A., Gherabli, A.: Experimental investigation of new biocomposite with low cost for thermal insulation. Energy Build. 66, 267–273 (2013). https://doi.org/10.1016/j.enbuild.2013.07.019

    Article  Google Scholar 

  27. Haba, B., Agoudjil, B., Boudenne, A., Benzarti, K.: Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr. Build. Mater. 154, 963–971 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.025

    Article  Google Scholar 

  28. Belakroum, R., Gherfi, A., Bouchema, K., Gharbi, A., Kerboua, Y., Kadja, M., Maalouf, C., Mai, T.H., El Wakil, N., Lachi, M.: Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers. J. Build. Eng. 12, 132–139 (2017). https://doi.org/10.1016/j.jobe.2017.05.011

    Article  Google Scholar 

  29. Boumhaout, M., Boukhattem, L., Hamdi, H., Benhamou, B., Ait Nouh, F.: Thermomechanical characterization of a bio-composite building material: mortar reinforced with date palm fibers mesh. Constr. Build. Mater. 135, 241–250 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.217

    Article  Google Scholar 

  30. Oancea, I., Bujoreanu, C., Budescu, M., Benchea, M., Grădinaru, C.M.: Considerations on sound absorption coefficient of sustainable concrete with different waste replacements. J. Clean. Prod. 203, 301–312 (2018). https://doi.org/10.1016/j.jclepro.2018.08.273

    Article  Google Scholar 

  31. Jayamani, E., Hamdan, S., Rahman, M.R., Bakri, M.K.B.: Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites. Procedia Eng. 97, 545–554 (2014). https://doi.org/10.1016/j.proeng.2014.12.282

    Article  Google Scholar 

  32. Seddeq, H.S., Aly, N.M., Marwa, A., Elshakankery, M.H.: Investigation on sound absorption properties for recycled fibrous materials. J. Ind. Text. 43, 56–73 (2012). https://doi.org/10.1177/1528083712446956

    Article  Google Scholar 

  33. Mahzan, S., Ahmad Zaidi, A.M., Ghazali, M.I., Yahya, M.N., Ismail, M.: Investigation on sound absorption of rice-husk reinforced composite. In: Proceedings of MUCEET. pp. 19–22 (2009)

  34. Kinnane, O., Reilly, A., Grimes, J., Pavia, S., Walker, R.: Acoustic absorption of hemp-lime construction. Constr. Build. Mater. 122, 674–682 (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.106

    Article  Google Scholar 

  35. Tang, X., Yan, X.: Acoustic energy absorption properties of fibrous materials: a review. Compos. Part A 101, 360–380 (2017). https://doi.org/10.1016/j.compositesa.2017.07.002

    Article  Google Scholar 

  36. Levdik, I., Inshakov, M.D., Misyurova, E.P., Nikitin, V.N.: Study of pulp structure by infrared spectroscopy. Tr. Vses Nauch. Issled. Irst. Tsellyul Bum. Prom. 52, 109–111 (1967)

    Google Scholar 

  37. Ben Arfi, R., Karoui, S., Mougin, K., Ghorbal, A.: Adsorptive removal of cationic and anionic dyes from aqueous solution by utilizing almond shell as bioadsorbent. Euro-Mediterr. J. Environ. Integr. 2, 20 (2017). https://doi.org/10.1007/s41207-017-0032-y

    Article  Google Scholar 

  38. Ibos, L., Tlili, R., Boudenne, A., Fois, M., Dujardin, N., Candau, Y.: Thermophysical characterization of polymers according to the temperature using a periodic method. Polym. Test. 66, 235–243 (2018). https://doi.org/10.1016/j.polymertesting.2018.01.023

    Article  Google Scholar 

  39. Braiek, A., Karkri, M., Adili, A., Ibos, L., Nasrallah, S.B.: Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy Build. 140, 268–279 (2017). https://doi.org/10.1016/j.enbuild.2017.02.001

    Article  Google Scholar 

  40. Neithalath, N., Weiss, J., Olek, J.: Acoustic performance and damping behavior of cellulose-cement composites. Cem. Concr. Compos. 26, 359–370 (2004). https://doi.org/10.1016/S0958-9465(03)00020-9

    Article  Google Scholar 

  41. Tonoli, G.H.D., Belgacem, M.N., Bras, J., Lahr, F.A.R.: Impact of bleaching pine fibre on the fibre/cement interface. J. Mater. Sci. 47, 4167–4177 (2012). https://doi.org/10.1007/s10853-012-6271-z

    Article  Google Scholar 

  42. Sreekumar, P.A., Thomas, S.P., marc Saiter, J., Joseph, K., Unnikrishnan, G., Thomas, S.: Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos. Part A Appl. Sci. Manuf. 40, 1777–1784 (2009). https://doi.org/10.1016/j.compositesa.2009.08.013

    Article  Google Scholar 

  43. Bederina, M., Marmoret, L., Mezreb, K., Khenfer, M.M., Bali, A., Quéneudec, M.: Effect of the addition of wood shavings on thermal conductivity of sand concretes: experimental study and modelling. Constr. Build. Mater. 21, 662–668 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.008

    Article  Google Scholar 

  44. Taoukil, D., El bouardi, A., Ajzoul, T., Ezbakhe, H.: Effect of the incorporation of wood wool on thermo physical proprieties of sand mortars. KSCE J. Civ. Eng. 16, 1003–1010 (2012). https://doi.org/10.1007/s12205-012-1470-3

    Article  Google Scholar 

  45. Saygılı, A., Baykal, G.: A new method for improving the thermal insulation properties of fly ash. Energy Build. 43, 3236–3242 (2011). https://doi.org/10.1016/j.enbuild.2011.08.024

    Article  Google Scholar 

  46. Balčiūnas, G., Žvironaitė, J., Vėjelis, S., Jagniatinskis, A., Gaidučis, S.: Ecological, thermal and acoustical insulating composite from hemp shives and sapropel binder. Ind. Crops Prod. 91, 286–294 (2016). https://doi.org/10.1016/j.indcrop.2016.06.034

    Article  Google Scholar 

  47. Miraoui, I., Jaballi, S., Hassis, H.: Analysis of the mechanical properties of mortar reinforced with long unidirectional Alfa fibers in different curing conditions. Mech. Compos. Mater. 52, 545–554 (2016). https://doi.org/10.1007/s11029-016-9605-0

    Article  Google Scholar 

  48. Oushabi, A., Sair, S., Abboud, Y., Tanane, O., Bouari, A.El: An experimental investigation on morphological, mechanical and thermal properties of date palm particles reinforced polyurethane composites as new ecological insulating materials in building. Case Stud. Constr. Mater. 7, 128–137 (2017). https://doi.org/10.1016/j.cscm.2017.06.002

    Article  Google Scholar 

  49. Samson, G., Lanos, C., Phelipot-mardelé, A.: A review of thermomechanical properties of lightweight concrete. Mag. Concr. Res. 69, 201–216 (2016). https://doi.org/10.1680/jmacr.16.00324

    Article  Google Scholar 

  50. Herrmann, N., McClements, D.J.: Influence of visco-inertial effects on the ultrasonic properties of monodisperse silica suspensions. J. Acoust. Soc. Am. 106, 1178–1181 (1999). https://doi.org/10.1121/1.427127

    Article  Google Scholar 

  51. Moretti, E., Belloni, E., Agosti, F.: Innovative mineral fiber insulation panels for buildings: thermal and acoustic characterization. Appl. Energy 169, 421–432 (2016). https://doi.org/10.1016/j.apenergy.2016.02.048

    Article  Google Scholar 

  52. Haque, R., Saxena, M., Shit, S.C., Asokan, P.: Fibre-matrix adhesion and properties evaluation of sisal polymer composite. Fibers Polym. 16, 146–152 (2015). https://doi.org/10.1007/s12221-015-0146-2

    Article  Google Scholar 

  53. Ilyas, R.A., Sapuan, S.M., Ishak, M.R.: Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr. Polym. 181, 1038–1051 (2018). https://doi.org/10.1016/j.carbpol.2017.11.045

    Article  Google Scholar 

  54. Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y., Sheltami, R.M.: Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19, 855–866 (2012). https://doi.org/10.1007/s10570-012-9684-6

    Article  Google Scholar 

  55. Saha, P., Chowdhury, S., Roy, D., Adhikari, B., Kim, J.K., Thomas, S.: A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites. Polym. Bull. 73, 587–620 (2016). https://doi.org/10.1007/s00289-015-1489-y

    Article  Google Scholar 

Download references

Acknowledgements

The University of Gabes and the Tunisian Ministry of Higher Education and Scientific Research are thanked for the financial support. Authors also thank Prof. Rim Najjar for help with English language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achraf Ghorbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahouioui, M., Ben Arfi, R., Fois, M. et al. Investigation of Fiber Surface Treatment Effect on Thermal, Mechanical and Acoustical Properties of Date Palm Fiber-Reinforced Cementitious Composites. Waste Biomass Valor 11, 4441–4455 (2020). https://doi.org/10.1007/s12649-019-00745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00745-3

Keywords

Navigation