Skip to main content
Log in

Effect of the incorporation of wood wool on thermo physical proprieties of sand mortars

  • Research Paper
  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The main objective of this study is to examine the heat insulation potentialities of the incorporation of wood wool in a sand mortar, in order to value the use of this type of lightened materials as lightweight insulating concrete. The wood wool has been incorporated, without any preliminary treatment, into a sand mortar. Four mortars containing different ratios of wool have been prepared and have been examined herein. It was shown that the incorporation of wood wool in the mortar decreases considerably its thermal conductivity and diffusivity. Thus, the thermal insulation capacity has been improved. Also, the influence of the water content on the thermo physical properties of the studied samples has been examined. Thus, the thermal conductivity increases rapidly with water content and the thermal diffusivity presents a maximum corresponding to a water content value W m . However, the materials used for building constructions must present sufficient mechanical strength. According to the experimental results, the compressive strength values are compatible with the use of these materials as lightweight concrete. The examination of the water absorption of the studied samples shows the high hygroscopic nature of the elaborated composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alrim, K., Ledhem, A., Douzan, O., Dheilly, R. M., and Queneudec, M. (1999). “Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites.” Cement and Concrete Composites, Vol. 21, No. 4, pp. 269–276.

    Article  Google Scholar 

  • Aouadja, F. Z., Mimoune, M., and Laquerbe, M. (1995). “Etude expérimentale sur les bétons à base de résidus de bois.” Revue Algérie-Equipement, No. 18, pp. 24–27.

    Google Scholar 

  • Arnould, L. (1986). Granulats de bétons légers, Presses des Ponts et Chaussées, Paris, France.

    Google Scholar 

  • Astrand, J., Laid, S., Bessadi, L., Teggour, H., Johansson, E., and Toumi N. (1994). Matériaux thermiquement isolant-Béton mousse panneaux en laine de bois, Centre d’Etudes de l’Habitat de Lund, Suède.

    Google Scholar 

  • Bederina, M., Laidoudi, B., Gouilleux, A., Khenfer, M.M., Bali, A. and Quéneudec, M. (2009). “Effect of the treatment of wood shavings on the physico-mechanical characteristics of wood sand concretes.” Construction and Building Materials, Vol. 23, No. 3, pp. 1311–1315.

    Article  Google Scholar 

  • Bederina, M., Marmoret, L., Mezreb, K., Khenfer, M. M., Bali, A., and Queneudec, M. (2007). “Effect of the addition of wood shavings on the thermal conductivity of the sand concretes-Experimental study and modeling.” Construction and Building Materials, Vol. 21, No. 3, pp. 662–668.

    Article  Google Scholar 

  • Bhattacharya, A., Calmidi, V. V., and Mahajan, R. L. (2002). “Thermophysical properties of high porosity metal foams.” International Journal of Heat and Mass Transfer, Vol. 45, No. 5, pp. 1017–1031.

    Article  MATH  Google Scholar 

  • Boutin, C. (1996). “Conductivité thermique du béton cellulaire autoclavé. modélisation par méthode autocohérente.” Matériaux et Constructions, Vol. 29, No. 194, pp. 609–615.

    Google Scholar 

  • Cerezo, V. (2005). Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales: Approche expérimentale et modélisation théorique, Thése de Doctorat en Genie Civil, INSA de Lyon, France.

    Google Scholar 

  • CEB (1978). Autoclaved aerated concrete, CEB Manual of Design and Technology, The Construction Press Ltd., Lancaster, England.

    Google Scholar 

  • Chaudhary, D. R., and Bhandary, R. C. (1968). “Heat transfert through a three phase porous medium.” Beit. J. Appl. Phys., Ser. 2, Vol. 1, No. 6, pp. 815–817.

    Google Scholar 

  • Degiovanni, A. (1977). “Diffusivité et méthode flash.” Revue Générale de Thermique, No. 185, pp. 420–442.

  • El bouardi, A. (1991). Etude en régime stationnaire et dynamique des propriétés thermophysiques de matériaux poreux humides non saturés utilisés en génie civil, Thèse de Doctorat d’Etat, Université Mohammed V, Rabat, Maroc.

    Google Scholar 

  • EN 196-1 (1995). Méthodes d’essai des ciments, Partie I, Détermination des résistances mécaniques, AFNOR.

  • Eustafievici, M., Muntean, O., and Muntean, M. (2002). “Influence of the wood waste characteristics and its chemical treatment on the composites properties.” NOCMAT/3-Vietnam, International Conference on Non-conventional Materials and Technologies, Hanoi, Vietnam, pp. 107–112.

    Google Scholar 

  • Ezbakhe, H. (1986). Caractéristiques thermiques et mécaniques des matériaux poreux utilisés comme isolants simples ou porteurs, Thèse de Doctorat d’Etat, U.C.B Lyon I, France.

    Google Scholar 

  • Foures, J. C., Javelas R., and Perrin B. (1981). “Caractéristiques thermiques des matériaux de construction: Détermination, variation en fonction de la teneur en eau.” Revue Générale de Thermique, No. 230, pp. 111–118.

  • IEA (1991). Catalogue of material properties, International Energy Agency, Rapport Annex XIV, Vol. 3.

  • Jennifer, L., Pehanich, P. R., Blankenhom, M., and Silsbee, R. (2004). “Wood fiber suface treatment level effects on selected mechanical properties of wood fiber-cement composites.” Cement and Concrete Research, Vol. 34, No. 1, pp. 59–65.

    Article  Google Scholar 

  • Khedari, J., Nankongnab, N., Hirunlabh, J., and Teekasap, S. (2004). “New low-cost insulation particle boards from mixture of durian peel and coconut coir.” Building and Environment, Vol. 39, No. 1, pp. 59–65.

    Article  Google Scholar 

  • Krischer, O., and Kroll, K. (1963). Technique du séchage, Centre Technique des Industries Aérauliques et Thermiques (CETIAT), Traduction Springer-Verlag, Berlin.

    Google Scholar 

  • Ledhem, A. (1997). Contribution à l’étude d’un béton de bois. Mise au point d’un procédé de minimisation des variations dimensionnelles d’un composite argile-ciment-bois, These de Doctorat, INSA de Lyon, France.

    Google Scholar 

  • Laurent, J. P. and Guerre-Chaley, C. (1995). “Influence de la teneur en eau et de la température sur la conductivité thermique du béton cellulaire autoclavé.” Materials and Structures, Vol. 28, No. 8, pp. 464–472.

    Article  Google Scholar 

  • Ledhem, A., Dheilly, R. M., and Queneudec, M. (2000). “Reuse of waste oils in the treatment of wood aggregates.” Waste Management, Vol. 20, No. 4, pp. 321–326.

    Article  Google Scholar 

  • Ledhem, A. (1997). Contribution à l’étude d’un beton de bois. Mise au point d’un procede de minimisation des variations dimensionnelles d’un composite argile-ciment-bois, Thése de Doctorat, INSA de Lyon, France.

    Google Scholar 

  • Martin, B. (1988). Etude de l’anisotropie de la conductivité des superisolants, Thèse de Doctorat, Institut National Polytechnique de Lorraine, France.

    Google Scholar 

  • Meukam, P., Jannot, Y., Noumowe, A., and Kofane, T. C. (2004). “Thermophysical characteristics of economical building materials.” Construction & Building Materials, Vol. 18, No. 6, pp. 437–443.

    Article  Google Scholar 

  • Mourtada, A. (1988). Caractérisation thermique des parois opaques et transparentes du bâtiment, Thèse de Doctorat d’Etat, Université Claude Bernard Lyon I, France.

    Google Scholar 

  • NF P18-560 (1990). Analyse granulométrique par tamisage, AFNOR.

  • NF P18-452 (1988). Bétons — Mesure du temps d’écoulement des bétons et mortiers aux maniabilimètres, AFNOR.

  • Parker, W. J., Jenkins, R. J., Butler, C. P. and Abbott, G. L. (1961). “Flash method of determining thermal diffusivity.” J. Appl. Phys., Vol. 32, No. 9, pp. 1679–1684.

    Article  Google Scholar 

  • RILEM (1978). “Functional classification of lightweight concrete.” Recommendations of RILEM LC2, Vol. 11, No. 64, pp. 281–283.

    Google Scholar 

  • Sacadura, J. F. (1979). Initiations aux transferts thermiques, Technique de documentation CAST, Institut National des Sciences Appliquées de Lyon, France.

    Google Scholar 

  • Soderhjelm, L. (1976). “Possible uses for fibrous sludges from pulp and paper industry.” Pap Puu-Pap Tim, Vol. 58, No. 9, pp. 620–627.

    Google Scholar 

  • Trouy-Triboulot, M. C. and Triboulot, P. (2001). “Matériau bois-Structure et caractéristiques.” Technique de l’ingénieur, Vol. CB1, No. 925, pp. 1–26.

    Google Scholar 

  • UNCHS (1991). Energy efficiency in housing construction and domestic use in developing countries, United Nations Centre for Human Settlements, Nairobi, Kenya.

    Google Scholar 

  • Willy, M. R. J. and Southwick, P. F. (1954). “An experimental investigation of the SP and resistivity phenomena in dirty sands.” J. Petrol. Technol., Vol. 6, No. 2, pp. 44–57.

    Google Scholar 

  • Yezou, R. (1978). Contribution à l’étude des propriétés thermophysiques des matériaux de construction cohérents et non cohérents, Thèse de Docteur-Ingénieur, INSA de Lyon, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Driss Taoukil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taoukil, D., El bouardi, A., Ajzoul, T. et al. Effect of the incorporation of wood wool on thermo physical proprieties of sand mortars. KSCE J Civ Eng 16, 1003–1010 (2012). https://doi.org/10.1007/s12205-012-1470-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-012-1470-3

Keywords

Navigation