Skip to main content

Advertisement

Log in

Fungal-Assisted Valorization of Raw Oil Palm Leaves for Production of Cellulase and Xylanase in Solid State Fermentation Media

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

As yet, the full potential of raw oil palm frond leaves (OPFL) is not fully explored. This study therefore, evaluated OPFL as cheap and sustainable growth substrate for two novel fungi species to produce cellulase and xylanase under solid-state fermentation (SSF). 18S rRNA, phylogeny and BIOLOG® analyses identified the cellulase and xylanase-producing fungal strains as Trichoderma asperellum UC1 and Rhizopus oryzae UC2. In addition to being more robust and fast-growing, strain UC2 demonstrated rapid spore production and exhibited sustained production of cellulase and xylanase as compared to the fungal strain UC1. Maximum endoglucanase, exoglucanase, β-glucosidase and xylanase activity for strain UC1 were recorded as 59.64 U/g, 9.58 U/g, 118.1 U/g and 175.91 U/g, respectively, while UC2 gave the corresponding enzyme activity of 41.62 U/g, 7.65 U/g, 113.07 U/g and 162.68 U/g. It was apparent that strains UC1 and UC2 grew well under SSF of raw OPFL, envisaging the feasibility of this form of oil palm biomass as growth substrate for fungi, yielding satisfactorily high titers of cellulase and xylanase. Noteworthily, the approach adopted by this study offers an alternative avenue to valorizing agriculture biomass, in conjunction to sustainably produce cellulose-acting enzymes to catalyse biofuel and platform chemical productions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rozali, N.L., Yarmo, M.A., Idris, A.S., Kushairi, A., Ramli, U.S.: Metabolomics differentiation of oil palm (Elaeis guineensis Jacq.) spear leaf with contrasting susceptibility to Ganoderma boninense. Plant OMICS. 10(2), 45–52 (2017). https://doi.org/10.21475/poj.10.02.17.pne364

    Article  Google Scholar 

  2. Loh, S.K., Choo, Y.M.: Prospect, Challenges and Opportunities on Biofuels in Malaysia, pp. 3–14. Springer, Boston (2013)

    Google Scholar 

  3. Onoja, E., Attan, N., Chandren, S., Ilyana, F., Razak, A., Abdul, S., Arafat, N., Abdul, R.: Insights into the physicochemical properties of the Malaysian oil palm leaves as an alternative source of industrial materials and bioenergy. Malayas. J. Fundam. Appl. Sci. 13(4), 623–631 (2017)

    Article  Google Scholar 

  4. Loh, S.K.: The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 141, 285–298 (2017). https://doi.org/10.1016/j.enconman.2016.08.081

    Article  Google Scholar 

  5. Agensi Inovasi Malaysia.: National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Palm Oil Industry. Agensi Inovasi Malaysia (AIM). (2013)

  6. Ezeilo, U.R., Zakaria, I.I., Huyop, F., Wahab, R.A.: Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnol. Biotechnol. Equip. 31, 1–16 (2017). https://doi.org/10.1080/13102818.2017.1330124

    Article  Google Scholar 

  7. Tan, H., Miao, R., Liu, T., Yang, L., Yang, Y., Chen, C., Lei, J., Li, Y., He, J., Sun, Q., Peng, W., Gan, B., Huang, Z.: A bifunctional cellulase-xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microb. Biotechnol. 11(2), 381–398 (2018). https://doi.org/10.1111/1751-7915.13034

    Article  Google Scholar 

  8. Sundram, S.: The effects of trichoderma in surface mulches supplemented with conidial drenches in the disease development of Ganoderma basal stem rot in oil palm. J. Oil Palm Res. 25(DEC), 314–325 (2013)

    Google Scholar 

  9. Ang, S.K., Shaza, E.M., Adibah, Y.A., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48(9), 1293–1302 (2013). https://doi.org/10.1016/j.procbio.2013.06.019

    Article  Google Scholar 

  10. Awalludin, M.F., Sulaiman, O., Hashim, R., Nadhari, W.N.A.W.: An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew. Sustain. Energy Rev. 50, 1469–1484 (2015). https://doi.org/10.1016/j.rser.2015.05.085

    Article  Google Scholar 

  11. Onoja, E., Chandren, S., Razak, A., Mahat, F.I., Wahab, N.A.: Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0258-1

    Article  Google Scholar 

  12. Ehsan, S., Wahid, M.A.: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016). https://doi.org/10.1016/j.rser.2015.12.112

    Article  Google Scholar 

  13. Sheldon, R.A.: Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950–963 (2014). https://doi.org/10.1039/c3gc41935e

    Article  Google Scholar 

  14. Naude, A., Nicol, W.: Fumaric acid fermentation with immobilised Rhizopus oryzae: quantifying time-dependent variations in catabolic flux. Process Biochem. 56, 8–20 (2017). https://doi.org/10.1016/J.PROCBIO.2017.02.027

    Article  Google Scholar 

  15. Wu, X., Liu, Q., Deng, Y., Chen, X., Zheng, Z., Jiang, S., Li, X.: Production of fumaric acid by bioconversion of corncob hydrolytes using an improved Rhizopus oryzae strain. Appl. Biochem. Biotechnol. 184(2), 553–569 (2018). https://doi.org/10.1007/s12010-017-2554-9

    Article  Google Scholar 

  16. Panda, S.K., Mishra, S.S., Kayitesi, E., Ray, R.C.: Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Environ. Res. 146, 161–172 (2016)

    Article  Google Scholar 

  17. Kanta Sharma, H., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-017-0059-y

    Article  Google Scholar 

  18. Zhou, S., Raouche, S., Grisel, S., Navarro, D., Sigoillot, J.-C., Herpoël-Gimbert, I.: Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass. Microb. Biotechnol. 8(6), 940–949 (2015). https://doi.org/10.1111/1751-7915.12307

    Article  Google Scholar 

  19. Sharma, R.K., Arora, D.S.: Fungal degradation of lignocellulosic residues: an aspect of improved nutritive quality. Crit. Rev. Microbiol. 41(1), 52–60 (2015). https://doi.org/10.3109/1040841X.2013.791247

    Article  Google Scholar 

  20. Elias, N., Chandren, S., Attan, N., Mahat, N.A., Ilyana, F., Razak, A., Jamalis, J., Wahab, R.A.: Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr Polymer. 176, 281–292 (2017). https://doi.org/10.1016/j.carbpol.2017.08.097

    Article  Google Scholar 

  21. Druzhinina, I.S., Kubicek, C.P.: Genetic engineering of Trichoderma reesei cellulases and their production. Microb. Biotechnol. 10(6), 1485–1499 (2017). https://doi.org/10.1111/1751-7915.12726

    Article  Google Scholar 

  22. Kamsani, N., Salleh, M.M., Yahya, A., Chong, C.S.: Production of lignocellulolytic enzymes by microorganisms isolated from Bulbitermes sp. termite gut in solid-state fermentation. Waste Biomass Valoriz. 7, 357–371 (2016). doi:https://doi.org/10.1007/s12649-015-9453-5

    Article  Google Scholar 

  23. Rangaswami, G.: An agar block technique for isolating soil micro organisms with special reference to Pythiaceous fungi. Sci. Cult. 24, 85–85 (1958)

    Google Scholar 

  24. Hubballi, M., Nakkeeran, S., Raguchander, T., Rajendran, L., Renukadevi, P., Samiyappan, R.: First report of leaf blight of noni caused by Alternaria alternata (Fr.) Keissler. J. Gen. Plant Pathol. 76, 284–286 (2010). https://doi.org/10.1007/s10327-010-0240-7

    Article  Google Scholar 

  25. Lusta, K.A., Kochkina, G.A., Sul, I.W., Chung, I.K., Park, H.S., Shin, D.: An integrated approach to taxonomical identification of the novel filamentous fungus strain producing extracellular lipases: morphological, physiological and DNA fingerprinting techniques. Fungal Divers. 12, 135–149 (2003)

    Google Scholar 

  26. Glass, N.L., Donaldson, G.C.: Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61(4), 1323–1330 (1995)

    Article  Google Scholar 

  27. Bochner, B., Ralha, M.C.: United States Patent [191]. (1997)

  28. Mandels, M., Weber, J.: The production of cellulases. Adv Chem. 95, 391–414. (1969)

    Article  Google Scholar 

  29. Samira, M., Mohammad, R., Gholamreza, G.: Carboxymethyl-cellulase and filter-paperase activity of new strains isolated from Persian Gulf. Microbiol. J. 1, 8–16(2011)

    Article  Google Scholar 

  30. Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., Gulati, A.: A Rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008). https://doi.org/10.1007/s00284-008-9276-8

    Article  Google Scholar 

  31. Melgar, G.Z., Souza de Assis, F.V., da Rocha, L.C., Fanti, S.C., Sette, L.D., Porto, A.L.M.: Growth curves of filamentous fungi for utilization in biocatalytic reduction of cyclohexanones. Global J. Sci. Front. Res. Chem. 13(5), 12–19 (2013)

    Google Scholar 

  32. Xu, X., Lin, M., Zang, Q., Shi, S.: Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Biores. Technol. 247, 88–95 (2018). https://doi.org/10.1016/J.BIORTECH.2017.08.192

    Article  Google Scholar 

  33. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  34. Sing, N.N., Zulkharnain, A., Roslan, H.A., Assim, Z., Husaini, A.: Bioremediation of PCP by trichoderma and cunninghamella strains isolated from sawdust. Braz. Arch. Biol. Technol. 57657(6), 811–820 (2014). https://doi.org/10.1590/S1516-8913201402852

    Article  Google Scholar 

  35. De Los Santos-Villalobos, S., Hernández-Rodríguez, L.E., Villaseñor-Ortega, F., Peña-Cabriales, J.J.: Production of Trichoderma asperellum T8a spores by a “home-made” solid-state fermentation of mango industrial wastes. BioResources 7(4), 4938–4951 (2012)

    Article  Google Scholar 

  36. Hunter, B.B., Barnett, H.L.: Growth and sporulation of species and isolates of Cylindrocladium in culture. Mycologia 70(3), 614–614 (1978). https://doi.org/10.2307/3759399

    Article  Google Scholar 

  37. Bottone, E.J., Weitzman, I., Hanna, B.A.: Rhizopus rhizopodiformis. Emerg. Etiol. Agent Mucormycosis 9(4), 530–537 (1979)

    Google Scholar 

  38. Jennessen, J., Rer, J.S., Olsson, J., Samson, R.A., Dijksterhuis, J., Hawksworth, D.L.: Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycol. Res. 112, 547–563 (2008). https://doi.org/10.1016/j.mycres.2007.11.006

    Article  Google Scholar 

  39. Harvey, M.L., Dadour, I.R., Gaudieri, S.: Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia. Forensic. Sci. Int. 131(2–3), 134–139 (2003). https://doi.org/10.1016/S0379-0738(02)00431-0

    Article  Google Scholar 

  40. Góes-Neto, A., Diniz, M.V.C., Carvalho, D.S., Bomfim, G.C., Duarte, A.A., Brzozowski, J.A., Petit Lobão, T.C., Pinho, S.T.R., El-Hani, C.N., Andrade, R.F.S.: Comparison of complex networks and tree-based methods of phylogenetic analysis and proposal of a bootstrap method. PeerJ. 6, e4349–e4349 (2018). https://doi.org/10.7717/peerj.4349

    Article  Google Scholar 

  41. Ajijolakewu, K.A., Leh, C.P., Nadiah, W., Abdullah, W., Lee, C.K.: Assessment of the effect of easily-metabolised carbon supplements on xylanase production by newly isolated Trichoderma asperellum USM SD4 cultivated on oil palm empty fruit bunches. BioResources 11(4), 9611–9627 (2016)

    Article  Google Scholar 

  42. Al-Sadi, A.M., Al-Oweisi, F.A., Edwards, S.G., Al-Nadabi, H., Al-Fahdi, A.M.: Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil. BMC Microbiol. 15(1), 147–147 (2015). https://doi.org/10.1186/s12866-015-0483-8

    Article  Google Scholar 

  43. Rahbek, L.B., Kamp, B.P., Lange, L.: Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fungal Genomics Biol. 4, 1–1 (2015). https://doi.org/10.4172/2165-8056.1000116

    Article  Google Scholar 

  44. Chowdhary, A., Kathuria, S., Singh, P.K., Sharma, B., Dolatabadi, S., Hagen, F., Meis, J.F.: Molecular characterization and in vitro antifungal susceptibility of 80 clinical isolates of mucormycetes in Delhi, India. Mycoses 57(s3), 97–107 (2014). https://doi.org/10.1111/myc.12234

    Article  Google Scholar 

  45. Ogawa, Y., Tokumasu, S., Tubaki, K.: An original habitat of tempeh molds. Mycoscience 45(4), 271–276 (2004). https://doi.org/10.1007/S10267-004-0180-1

    Article  Google Scholar 

  46. Kwon, J.-H., Kang, D.-W., Yoon, H.-S., Kwak, Y.-S., Kim, J.: Rhizopus fruit rot caused by Rhizopus oryzae on strawberry. J. Agric. Life Sci. J. Agric. Life Sci. 48(484), 27–3427 (2014). https://doi.org/10.14397/jals.2014.48.4.27

    Article  Google Scholar 

  47. Wang, Q., Lin, H., Shen, Q., Fan, X., Bai, N., Zhao, Y.: Characterization of cellulase secretion and Cre1-mediated carbon source repression in the potential lignocellulose-degrading strain Trichoderma asperellum T-1. PLoS ONE 10(3), e0119237–e0119237 (2015). https://doi.org/10.1371/journal.pone.0119237

    Article  Google Scholar 

  48. Srigyan, D., Behera, H.S., Satpathy, G., Ahmed, N.H., Sharma, N., Tandon, R., Xess, I., Titiyal, J.S.: Molecular characterisation of fungi from mycotic keratitis and invasive infections and comparison with conventional methods. J. Clin. Diagn. Res. (2018). https://doi.org/10.7860/JCDR/2018/34188.11301

    Article  Google Scholar 

  49. Amore, A., Giacobbe, S., Faraco, V.: Regulation of cellulase and hemicellulase gene expression in fungi. Curr. Genomics. 14(4), 230–249 (2013). https://doi.org/10.2174/1389202911314040002

    Article  Google Scholar 

  50. Houfani, A.A., Větrovsky, T., Baldrian, P., Benallaoua, S.: Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis. World J. Microbiol. Biotechnol. 33(2), 1–14 (2017). https://doi.org/10.1007/s11274-016-2198-x

    Article  Google Scholar 

  51. Sarsaiya, S., Awasthi, S.K., Awasthi, M.K., Awasthi, A.K., Mishra, S., Chen, J.: The dynamic of cellulase activity of fungi inhabiting organic municipal solid waste. Biores. Technol. 251, 411–415 (2017). https://doi.org/10.1016/j.biortech.2017.12.011

    Article  Google Scholar 

  52. Florencio, C., Couri, S., Farinas, C.S.: Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. (2012). https://doi.org/10.1155/2012/793708

    Article  Google Scholar 

  53. Pointing, S.B.: Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 2(March), 17–33 (1999). https://doi.org/10.1364/AO.49.002813

    Article  Google Scholar 

  54. Palaniswamy, M., Vaikuntavasan, B., Ramaswamy, P.: Isolation, identification and screening of potential xylanolytic enzyme from litter degrading fungi. Afr. J. Biotechnol. 7(11), 1978–1982 (2008)

    Google Scholar 

  55. Seiboth, B., Herold, S., Kubicek, C.P.: Metabolic Engineering of Inducer Formation for Cellulase and Hemicellulase Gene Expression in Trichoderma reesei, pp. 367–390. Springer, Dordrecht (2012)

    Google Scholar 

  56. Sternberg, D., Vuayakumar, P., Reese, E.T.: β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23(2), 139–147 (1977). https://doi.org/10.1139/m77-020

    Article  Google Scholar 

  57. Acharya, S., Chaudhary, A.: Bioprospecting thermophiles for cellulase production: a review. Braz. J. Microbiol. 43(3), 844–856 (2012). https://doi.org/10.1590/S1517-83822012000300001

    Article  Google Scholar 

  58. Riquelme, M., Aguirre, J., Bartnicki-García, S., Braus, G.H., Feldbrügge, M., Fleig, U., Hansberg, W., Herrera-Estrella, A., Kämper, J., Kück, U., Mouriño-Pérez, R.R., Takeshita, N., Fischer, R.: Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol. Mol. Biol. Rev. 82(2), e00068–e00017 (2018). https://doi.org/10.1128/MMBR.00068-17

    Article  Google Scholar 

  59. Sridevi, A., Ramanjaneyulu, G., Suvarnalatha Devi, P.: Biobleaching of paper pulp with xylanase produced by Trichoderma asperellum. 3 Biotech. 7(4), 266–266 (2017). https://doi.org/10.1007/s13205-017-0898-z

    Article  Google Scholar 

  60. Sridevi, B., Charya, M.A.S.: Isolation, identification and screening of potential cellulase-free xylanase producing fungi. Afr. J. Biotechnol. 10(22), 4624–4630 (2011). https://doi.org/10.5897/AJB10.2108

    Article  Google Scholar 

  61. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., Xi, Y.: Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Biores. Technol. 99(16), 7623–7629 (2008). https://doi.org/10.1016/j.biortech.2008.02.005

    Article  Google Scholar 

  62. Cripwell, R., Favaro, L., Rose, S.H., Basaglia, M., Cagnin, L., Casella, S., van Zyl, W.: Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast. Appl. Energy 160, 610–617 (2015). https://doi.org/10.1016/J.APENERGY.2015.09.062

    Article  Google Scholar 

  63. Ang, S.K., Yahya, A., Aziz, S.A., Salleh, M.: Isolation, screening, and identification of potential cellulolytic and xylanolytic producers for biodegradation of untreated oil palm trunk and its application in saccharification of lemongrass leaves isolation. Prep. Biochem. Biotechnol. 45, 279–305 (2015). https://doi.org/10.1080/10826068.2014.923443

    Article  Google Scholar 

  64. Roslan, A.M., Hassan, M.A., Abd-Azizz, S., Yee, P.L.: Effect of palm oil mill effluent supplementation on cellulase production from rice straw by local fungal isolates. Int. J. Agric. Res. 4, 185–192 (2009)

    Article  Google Scholar 

  65. Maceno, M.A.C.a., Vandenberghe, L.P.d.S., Woiciechowski, A.L., Soccol, C.R., Spier, M.R.: Production of cellulases by Phanerochaete sp. using empty fruit bunches of palm (EFB) as substrate: optimization and scale-up of process in bubble column and stirred tank bioreactors (STR). Waste Biomass Valoriz. 7, 1327–1337 (2016). https://doi.org/10.1007/s12649-016-9503-7

    Article  Google Scholar 

  66. Marx, I.J., Van Wyk, N., Smit, S., Jacobson, D., Viljoen-Bloom, M., Volschenk, H.: Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol. Biofuels 6, 172–172 (2013)

    Article  Google Scholar 

  67. Raghuwanshi, S., Deswal, D., Karp, M., Kuhad, R.C.: Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose. Fuel 124, 183–189 (2014). https://doi.org/10.1016/J.FUEL.2014.01.107

    Article  Google Scholar 

  68. Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K.: Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crops Prod. 34(1), 1160–1167 (2011). https://doi.org/10.1016/J.INDCROP.2011.04.001

    Article  Google Scholar 

  69. Salgado, J.M., Abrunhosa, L., Venâncio, A., Domínguez, J.M., Belo, I.: Enhancing the bioconversion of winery and olive mill waste mixtures into lignocellulolytic enzymes and animal feed by Aspergillus uvarum using a packed-bed bioreactor. J. Agric. Food Chem. 63(42), 9306–9314 (2015). https://doi.org/10.1021/acs.jafc.5b02131

    Article  Google Scholar 

  70. Kumar, J., Reetu, S.: Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech (2015). https://doi.org/10.1007/s13205-014-0246-5

    Article  Google Scholar 

  71. Oberoi, H.S., Chavan, Y., Bansal, S., Dhillon, G.S.: Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioprocess Technol. 3(4), 528–536 (2010). https://doi.org/10.1007/s11947-008-0092-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by the Research University Grant (GUP) from Universiti Teknologi Malaysia, Johor Bahru [grant number Q.J130000.2526.13H09].

Author information

Authors and Affiliations

Authors

Contributions

RAW and URE conceived the main conceptual ideas and proof outline. RAW is the main supervisor and, CTL, FH, NAM and IIZ helped co-supervise the project. URE and RAW wrote the manuscript with input from all authors. All authors provided critical feedback and helped shape the analysis and manuscript.

Corresponding author

Correspondence to Roswanira Abdul Wahab.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezeilo, U.R., Wahab, R.A., Tin, L.C. et al. Fungal-Assisted Valorization of Raw Oil Palm Leaves for Production of Cellulase and Xylanase in Solid State Fermentation Media. Waste Biomass Valor 11, 3133–3149 (2020). https://doi.org/10.1007/s12649-019-00653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00653-6

Keywords

Navigation