Skip to main content
Log in

Conservation of Endangered Cordyceps sinensis Through Artificial Cultivation Strategies of C. militaris, an Alternate

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cordyceps, an entomopathogenic fungus belonging to the Ascomycota phylum, is a familiar remedial mushroom that is extensively used in the traditional medicinal system, especially in South Asian nations. The significance of this genus’ members in a range of therapeutic and biotechnological applications has long been acknowledged. The exceedingly valuable fungus Ophiocordyceps sinensis (Cordyceps sinensis) is found in the alpine meadows of Bhutan, Nepal, Tibet, and India, where it is severely harvested. Driven by market demand and ecological concerns, the study highlights challenges in natural C. sinensis collection and emphasizes the shift towards sustainable artificial cultivation methods. This in-depth review navigates Cordyceps cultivation strategies, focusing on C. sinensis and the viable alternative, C. militaris. The escalating demand for Cordyceps fruiting bodies and bioactive compounds prompts a shift toward sustainable artificial cultivation. While solid-state fermentation on brown rice remains a traditional method, liquid culture, especially submerged and surface/static techniques, emerges as a key industrial approach, offering shorter cultivation periods and enhanced cordycepin production. The review accentuates the adaptability and scalability of liquid culture, providing valuable insights for large-scale Cordyceps production. The future prospects of Cordyceps cultivation require a holistic approach, combining scientific understanding, technological innovation, and sustainable practices to meet the demand for bioactive metabolites while ensuring the conservation of natural Cordyceps populations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during the study are included in this published article.

References

  1. Sabaratnam, V., Kah-Hui, W., Naidu, M., & David, P. (2013). Neuronal health: Can culinary and medicinal mushrooms help? Journal of Traditional & Complementary Medicine, 3, 62–68. https://doi.org/10.4103/2225-4110.106549

    Article  Google Scholar 

  2. Olatunji, O. J., Tang, J., Tola, A., Auberon, F., Oluwaniyi, O., & Ouyang, Z. (2018). The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia, 129, 293–316. https://doi.org/10.1016/j.fitote.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  3. Krishna, K. V., Ulhas, R. S., & Malaviya, A. (2023). Bioactive compounds from Cordyceps and their therapeutic potential. Critical Reviews in Biotechnology. https://doi.org/10.1080/07388551.2023.2231139

    Article  PubMed  Google Scholar 

  4. Dong, C., Guo, S., Wang, W., & Liu, X. (2015). Cordyceps industry in China. Mycology, 6, 121–129. https://doi.org/10.1080/21501203.2015.1043967

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smith-Hall, C., & Bennike, R. B. (2022). Understanding the sustainability of Chinese caterpillar fungus harvesting: The need for better data. Biodiversity and Conservation, 31, 729–733. https://doi.org/10.1007/s10531-022-02363-3

    Article  Google Scholar 

  6. Qin, Q., & lian, Zhou, G. ling, Zhang, H., Meng, Q., Zhang, J. hong, Wang, H. tuo, Miao, L., Li, X.,. (2018). Obstacles and approaches in artificial cultivation of Chinese Cordyceps. Mycology, 9, 7–9. https://doi.org/10.1080/21501203.2018.1442132

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsa-ard, J. J., Shrestha, B., & Spatafora, J. W. (2007). Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, 5–59. https://doi.org/10.3114/sim.2007.57.01

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cui, J. D. (2015). Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Critical Reviews in Biotechnology, 35, 475–484. https://doi.org/10.3109/07388551.2014.900604

    Article  CAS  PubMed  Google Scholar 

  9. Paterson, R. R. M. (2008). Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry, 69, 1469–1495. https://doi.org/10.1016/j.phytochem.2008.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou, X., Gong, Z., Su, Y., Lin, J., & Tang, K. (2009). Cordyceps fungi: Natural products, pharmacological functions and developmental products. Journal of Pharmacy and Pharmacology, 61, 279–291. https://doi.org/10.1211/jpp/61.03.0002

    Article  CAS  PubMed  Google Scholar 

  11. Kobayasi, Y. (1941a). The genus Cordyceps and its allies. In: Science Reports of the Tokyo Bunrika Daigaku (pp. 53–260).

  12. Holliday, J. C., & Cleaver, M. (2008). Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) link (Ascomycetes). A review. International Journal of Medicinal Mushrooms, 10, 219–234. https://doi.org/10.1615/IntJMedMushr.v10.i3.30

    Article  CAS  Google Scholar 

  13. Winkler, D. (2011). Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability on the Tibetan Plateau and in the Himalayas. Asian Medicine, 5, 291–316. https://doi.org/10.1163/157342109x568829

    Article  Google Scholar 

  14. Panda, A. K., & Swain, K. C. (2011). Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. Journal of Ayurveda and Integrative Medicine, 2, 9–13. https://doi.org/10.4103/0975-9476.78183

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kobayasi, Y. (1941b). The genus Cordyceps and its allies.-2. Sci. Reports Tokyo Bunrika Daigaku Ser. B.

  16. Rogerson, C. T. (1970). The Hypocrealean fungi (Ascomycetes, Hypocreales). Mycologia, 62, 865–910. https://doi.org/10.1080/00275514.1970.12019033

    Article  CAS  PubMed  Google Scholar 

  17. Winkler, D. (2008). Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Economic Botany, 62, 291–305. https://doi.org/10.1007/s12231-008-9038-3

    Article  Google Scholar 

  18. Xing, X. K., & Guo, S. X. (2008). The structure and histochemistry of sclerotia of Ophiocordyceps sinensis. Mycologia, 100, 616–625. https://doi.org/10.3852/07-007R2

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y., Li, E., Wang, C., Li, Y., & Liu, X. (2012). Ophiocordyceps sinensis, the flagship fungus of china: Terminology, life strategy and ecology. Mycology, 3, 2–10. https://doi.org/10.1080/21501203.2011.654354

    Article  Google Scholar 

  20. Zhu, J. S., & G.M.H. and K.J.,. (1998). The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinenesis. The Journal of Alternative and Complementary Medicine, 4, 289–303.

    Article  CAS  PubMed  Google Scholar 

  21. Ng, T. B., & Wang, H. X. (2005). Pharmacological actions of Cordyceps, a prized folk medicine. Journal of Pharmacy and Pharmacology, 57, 1509–1519. https://doi.org/10.1211/jpp.57.12.0001

    Article  CAS  PubMed  Google Scholar 

  22. Jędrejko, K. J., Lazur, J., & Muszyńska, B. (2021). Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods. https://doi.org/10.3390/foods10112634

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hopping, K. A., Chignell, S. M., & Lambin, E. F. (2018). The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proceedings of the National Academy of Sciences, 115, 11489–11494. https://doi.org/10.1073/pnas.1811591115

    Article  CAS  Google Scholar 

  24. Shrestha, U. B., & Bawa, K. S. (2014). Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya. PLoS ONE. https://doi.org/10.1371/journal.pone.0106405

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cannon, P. F., Hywel-Jones, N. L., Maczey, N., Norbu, L., Tshitila, S., & T., Lhendup, P.,. (2009). Steps towards sustainable harvest of Ophiocordyceps sinensis in Bhutan. Biodiversity and Conservation, 18, 2263–2281. https://doi.org/10.1007/s10531-009-9587-5

    Article  Google Scholar 

  26. Li, Y., Wang, X. L., Jiao, L., Jiang, Y., Li, H., Jiang, S. P., Lhosumtseiring, N., Fu, S. Z., Dong, C. H., Zhan, Y., & Yao, Y. J. (2011). A survey of the geographic distribution of Ophiocordyceps sinensis. Journal of Microbiology, 49, 913–919. https://doi.org/10.1007/s12275-011-1193-z

    Article  PubMed  Google Scholar 

  27. Negi, C. S., Joshi, P., & Bohra, S. (2015). Rapid vulnerability assessment of yartsa gunbu (Ophiocordyceps sinensis [Berk.] G.H. Sung et al) in Pithoragarh District, Uttarakhand State, India. Mountain Research and Development, 35, 382–391. https://doi.org/10.1659/MRD-JOURNAL-D-14-00005.1

    Article  Google Scholar 

  28. Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., & Wilkes, A. (2009). The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23, 520–530. https://doi.org/10.1111/j.1523-1739.2009.01237.x

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J., Yu, L., Lin, M., Yan, Q., & Yang, S. T. (2017). n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2. Bioresource Technology, 233, 51–57. https://doi.org/10.1016/j.biortech.2017.02.079

    Article  CAS  PubMed  Google Scholar 

  30. Babu, U., & Bawa, K. S. (2013). Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biological Conservation, 159, 514–520. https://doi.org/10.1016/j.biocon.2012.10.032

    Article  Google Scholar 

  31. Sharma, S. (2004). Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: Conservation and biotechnological priorities. Current Science, 86, 1614–1619.

    Google Scholar 

  32. Winkler, D. (2009). Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability on the Tibetan Plateau and in the Himalayas. Asian Medicine, 5, 291–316. https://doi.org/10.1163/157342109X568829

    Article  Google Scholar 

  33. Li, X., Liu, Q., Li, W., Li, Q., Qian, Z., Liu, X., & Dong, C. (2019). A breakthrough in the artificial cultivation of Chinese Cordyceps on a large-scale and its impact on science, the economy, and industry. Critical Reviews in Biotechnology, 39, 181–191. https://doi.org/10.1080/07388551.2018.1531820

    Article  PubMed  Google Scholar 

  34. Shrestha, B., Zhang, W., Zhang, Y., & Liu, X. (2012). The medicinal fungus Cordyceps militaris: Research and development. Mycological Progress, 11, 599–614. https://doi.org/10.1007/s11557-012-0825-y

    Article  Google Scholar 

  35. Kontogiannatos, D., Koutrotsios, G., Xekalaki, S., & Zervakis, G. I. (2021). Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris—A review of various aspects and recent trends towards the exploitation of a valuable fungus. Journal of Fungi. https://doi.org/10.3390/jof7110986

    Article  PubMed  PubMed Central  Google Scholar 

  36. Phull, A. R., Ahmed, M., & Park, H. J. (2022). Cordyceps militaris as a bio functional food source: Pharmacological potential anti-inflammatory actions and related molecular mechanisms. Microorganisms. https://doi.org/10.3390/microorganisms10020405

    Article  PubMed  PubMed Central  Google Scholar 

  37. Adnan, M., Ashraf, S. A., Khan, S., Alshammari, E., & Awadelkareem, A. M. (2017). Effect of pH, temperature and incubation time on cordycepin production from Cordyceps militaris using solid-state fermentation on various substrates. CYTA - Journal of Food, 15, 617–621. https://doi.org/10.1080/19476337.2017.1325406

    Article  CAS  Google Scholar 

  38. Basith, M., & Madelin, M. F. (1968). Studies on the production of perithecial stromata by Cordyceps militaris in artificial culture. Canadian Journal of Botany, 46, 473–480. https://doi.org/10.1139/b68-071

    Article  Google Scholar 

  39. Cao, L., Ye, Y., & Han, R. (2015). Fruiting body production of the medicinal Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes), in artificial medium. International Journal of Medicinal Mushrooms, 17, 1107–1112. https://doi.org/10.1615/IntJMedMushrooms.v17.i11.110

    Article  PubMed  Google Scholar 

  40. Chiang, S. S., Liang, Z. C., Wang, Y. C., & Liang, C. H. (2017). Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. Journal of Food Composition and Analysis, 60, 51–56. https://doi.org/10.1016/j.jfca.2017.03.007

    Article  CAS  Google Scholar 

  41. Gregori, A. (2014). Cordycepin production by Cordyceps militaris cultivation on spent brewery grains. Acta Biologica Slovenica, 57, 45–52.

    Article  Google Scholar 

  42. Liang, Z. C., Liang, C. H., & Wu, C. Y. (2014). Various grain substrates for the production of fruiting bodies and bioactive compounds of the medicinal caterpillar mushroom, Cordyceps militaris (Ascomycetes). International Journal of Medicinal Mushrooms, 16, 569–578. https://doi.org/10.1615/IntJMedMushrooms.v16.i6.60

    Article  PubMed  Google Scholar 

  43. Lim, L. T., Lee, C. Y., & Chang, E. T. (2012). Optimization of solid state culture conditions for the production of adenosine, Cordycepin, and d-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris (L.:Fr.) link (Ascomycetes). International Journal of Medicinal Mushrooms, 14, 181–187. https://doi.org/10.1615/IntJMedMushr.v14.i2.60

    Article  CAS  PubMed  Google Scholar 

  44. Wen, T. C., Li, G. R., Kang, J. C., Kang, C., & Hyde, K. D. (2014). Optimization of solid-state fermentation for fruiting body growth and Cordycepin production by Cordyceps militaris. Chiang Mai Journal of Science, 41, 858–872.

    CAS  Google Scholar 

  45. Lin, Q., Long, L., Wu, L., Zhang, F., Wu, S., Zhang, W., & Sun, X. (2017). Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. Journal of the Science of Food and Agriculture, 97, 3476–3480. https://doi.org/10.1002/jsfa.8097

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J., Cho, K., Shin, S. G., Bae, H., Koo, T., Han, G., & Hwang, S. (2016). Nutrient recovery of starch processing waste to Cordyceps militaris: Solid state cultivation and submerged liquid cultivation. Applied Biochemistry and Biotechnology, 180, 274–288. https://doi.org/10.1007/s12010-016-2098-4

    Article  CAS  PubMed  Google Scholar 

  47. Kang, N., Lee, H. H., Park, I., & Seo, Y. S. (2017). Development of high Cordycepin-producing Cordyceps militaris strains. Mycobiology, 45, 31–38. https://doi.org/10.5941/MYCO.2017.45.1.31

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang, L. Y., Liang, X., Zhao, J., Wang, Y., & Li, S. P. (2019). Dynamic analysis of nucleosides and carbohydrates during developmental stages of Cordyceps militaris in Silkworm (Bombyxmori). Journal of AOAC International, 102, 741–747. https://doi.org/10.5740/jaoacint.18-0309

    Article  CAS  PubMed  Google Scholar 

  49. Turk, A., Abdelhamid, M. A. A., Yeon, S. W., Ryu, S. H., Lee, S., Ko, S. M., Kim, B. S., Pack, S. P., Hwang, B. Y., & Lee, M. K. (2022). Cordyceps mushroom with increased Cordycepin content by the cultivation on edible insects. Frontiers in Microbiology, 13, 1–8. https://doi.org/10.3389/fmicb.2022.1017576

    Article  Google Scholar 

  50. Kaewkam, A., Sornchai, P., Chanprame, S., & Iamtham, S. (2021). Utilization of Spirulina maxima to enhance yield and Cordycepin content in Cordyceps militaris artificial cultivation. Journal of International Society of Southeast Asian Agricultural Science, 27, 1–14.

    Google Scholar 

  51. Kaewkam, A., Pan-utai, W., Chanprame, S., & Iamtham, S. (2022). Effect of Spirulina biomass residue on yield and cordycepin and adenosine production of Cordyceps militaris culture. Bioresource Technology Reports. https://doi.org/10.1016/j.biteb.2021.100893

    Article  Google Scholar 

  52. Jian, L. R., & Li, Z. F. (2017). Effect of plant growth regulator on cordycepin and adenosine production of Cordyceps militaris cultured on wheat solid substrate. Academia Journal of Agricultural Research, 5, 279–286. https://doi.org/10.15413/ajar.2017.0138

    Article  CAS  Google Scholar 

  53. Wen, T. C., Kang, C., Meng, Z. B., Qi, Y. B., Hyde, K. D., & Kang, J. C. (2016). Enhanced production of Cordycepin by solid state fermentation of Cordyceps militaris using additives. Chiang Mai Journal of Science, 43, 972–984.

    CAS  Google Scholar 

  54. Seelarat, W., Sangwanna, S., Panklai, T., Chaosuan, N., Bootchanont, A., Wattanawikkam, C., Subcharoen, A., Subcharoen, N., Chanchula, N., Boonyawan, D., & Porjai, P. (2023). Enhanced fruiting body production and bioactive phytochemicals from white Cordyceps militaris by blending Cordyceps militaris and using cold plasma jet. Plasma Chemistry and Plasma Processing, 43, 139–162. https://doi.org/10.1007/s11090-022-10292-w

    Article  CAS  Google Scholar 

  55. Sangwanna, S., Seelarat, W., Panklai, T., Chaosuan, N., Subcharoen, A., Subcharoen, N., Chanchula, N., Inyod, T., Toemarrom, T., Bootchanont, A., Wattanawikkam, C., Pavasupree, S., Boonyawan, D., & Porjai, P. (2023). Air atmospheric pressure plasma jet to improve fruiting body production and enhance bioactive phytochemicals from mutant Cordyceps militaris (White Cordyceps militaris). Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03028-x

    Article  Google Scholar 

  56. Yang, T., Sun, J., Lian, T., Wang, W., & Dong, C. (2014). Process optimization for extraction of carotenoids from medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes). International Journal of Medicinal Mushrooms, 16, 125–135. https://doi.org/10.1615/IntJMedMushr.v16.i2.30

    Article  CAS  PubMed  Google Scholar 

  57. Phoungthong, K., Aiphuk, W., Maneerat, T., Suwunwong, T., Choto, P., & Chomnunti, P. (2022). Utilization of corncob biochar in cultivation media for Cordycepin production and biomass of Cordyceps militaris. Sustain. https://doi.org/10.3390/su14159362

    Article  Google Scholar 

  58. Fan, D. D., Wang, W., & Zhong, J. J. (2012). Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochemical Engineering Journal, 60, 30–35. https://doi.org/10.1016/j.bej.2011.09.014

    Article  CAS  Google Scholar 

  59. Masuda, M., Das, S. K., Fujihara, S., Hatashita, M., & Sakurai, A. (2011). Production of Cordycepin by a repeated batch culture of a Cordyceps militaris mutant obtained by proton beam irradiation. Journal of Bioscience and Bioengineering, 111, 55–60. https://doi.org/10.1016/j.jbiosc.2010.08.018

    Article  CAS  PubMed  Google Scholar 

  60. Kang, C., Wen, T. C., Kang, J. C., Meng, Z. B., Li, G. R., & Hyde, K. D. (2014). Optimization of large-scale culture conditions for the production of Cordycepin with Cordyceps militaris by liquid static culture. The Scientific World Journal, 2014, 20–24. https://doi.org/10.1155/2014/510627

    Article  CAS  Google Scholar 

  61. Tang, J., Qian, Z., & Wu, H. (2018). Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.07.128

    Article  PubMed  Google Scholar 

  62. Lee, S. K., Hun, L. J., Kim, H. R., Chun, Y., Lee, J. H., Yoo, H. Y., Park, C., & Kim, S. W. (2019). Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules. https://doi.org/10.3390/biom9090461

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cui, J. D., & Zhang, Y. N. (2012). Evaluation of metal ions and surfactants effect on cell growth and exopolysaccharide production in two-stage submerged culture of Cordyceps militaris. Applied Biochemistry and Biotechnology, 168, 1394–1404. https://doi.org/10.1007/s12010-012-9865-7

    Article  CAS  PubMed  Google Scholar 

  64. Mao, X. B., Eksriwong, T., Chauvatcharin, S., & Zhong, J. J. (2005). Optimization of carbon source and carbon/nitrogen ratio for Cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochemistry, 40, 1667–1672. https://doi.org/10.1016/j.procbio.2004.06.046

    Article  CAS  Google Scholar 

  65. Mao, X. B., & Zhong, J. J. (2006). Significant effect of NH4+ on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Enyzme and Microbial Technology, 38, 343–350. https://doi.org/10.1016/j.enzmictec.2004.10.010

    Article  CAS  Google Scholar 

  66. Mao, X. B., & Zhong, J. J. (2004). Hyperproduction of Cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnology Progress, 20, 1408–1413. https://doi.org/10.1021/bp049765r

    Article  CAS  PubMed  Google Scholar 

  67. Tang, J., Liu, Y., & Zhu, L. (2014). Optimization of fermentation conditions and purification of Cordycepin from Cordyceps militaris. Preparative Biochemistry & Biotechnology, 44, 90–106. https://doi.org/10.1080/10826068.2013.833111

    Article  CAS  Google Scholar 

  68. Tang, J., Qian, Z., & Zhu, L. (2015). Two-step shake-static fermentation to enhance Cordycepin production by Cordyceps militaris. Chemical Engineering Transactions, 46, 19–24. https://doi.org/10.3303/CET1546004

    Article  Google Scholar 

  69. Shrestha, B., Lee, W.-H., Han, S.-K., & Sung, J.-M. (2006). Observations on some of the mycelial growth and pigmentation characteristics of Cordyceps militaris isolates. Mycobiology, 34, 83. https://doi.org/10.4489/myco.2006.34.2.083

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xu, C.-P., Kim, S.-W., Hwang, H.-J., & Yun, J.-W. (2002). Application of statistically based experimental designs for the optimization of exo-polysaccharide production by Cordyceps militaris NG3. Biotechnology and Applied Biochemistry, 36, 127. https://doi.org/10.1042/ba20020032

    Article  CAS  PubMed  Google Scholar 

  71. Xiao, L., Sun, S., Li, K., Lei, Z., Shimizu, K., Zhang, Z., & Adachi, Y. (2020). Effects of nanobubble water supplementation on biomass accumulation during mycelium cultivation of Cordyceps militaris and the antioxidant activities of extracted polysaccharides. Bioresource Technology Reports, 12, 100600. https://doi.org/10.1016/j.biteb.2020.100600

    Article  Google Scholar 

  72. Wu, Y. Z., & Lee, C. L. (2021). Cordyceps cicadae NTTU 868 mycelium with the addition of bioavailable forms of magnesium from deep ocean water prevents the Aβ40 and streptozotocin-induced memory deficit via suppressing Alzheimer’s disease risk factors and increasing magnesium uptake of. Fermentation. https://doi.org/10.3390/fermentation7010039

    Article  Google Scholar 

  73. Han, S. H., Ahn, Y., Lee, H. J., Suh, H. J., & Jo, K. (2021). Antioxidant and immunostimulatory activities of a submerged culture of cordyceps sinensis using spent coffee. Foods. https://doi.org/10.3390/foods10081697

    Article  PubMed  PubMed Central  Google Scholar 

  74. Masuda, M., Urabe, E., Honda, H., Sakurai, A., & Sakakibara, M. (2007). Enhanced production of Cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enyzme and Microbial Technology, 40, 1199–1205. https://doi.org/10.1016/j.enzmictec.2006.09.008

    Article  CAS  Google Scholar 

  75. Masuda, M., Urabe, E., Sakurai, A., & Sakakibara, M. (2006). Production of Cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enyzme and Microbial Technology, 39, 641–646. https://doi.org/10.1016/j.enzmictec.2005.11.010

    Article  CAS  Google Scholar 

  76. Hung, L. T., Keawsompong, S., Hanh, V. T., Sivichai, S., & Hywel-Jones, N. L. (2009). Effect of temperature on Cordycepin production in Cordyceps militaris. Thai Journal of Agricultural Science, 42, 219–225.

    Google Scholar 

  77. Lin, L. T., Lai, Y. J., Wu, S. C., Hsu, W. H., & Tai, C. J. (2018). Optimal conditions for Cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer. Journal of Food and Drug Analysis, 26, 135–144. https://doi.org/10.1016/j.jfda.2016.11.021

    Article  CAS  PubMed  Google Scholar 

  78. Huang, S. J., Huang, F. K., Li, Y. S., & Tsai, S. Y. (2017). The quality improvement of solid-state fermentation with Cordyceps militaris by UVB irradiation. Food Technology and Biotechnology, 55, 445–453. https://doi.org/10.17113/ftb.55.04.17.5235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng, Q., Wei, T., Lin, Y., Ye, Z., Lin, J., Guo, L., & Fan Yun, L. K. (2019). Developing a novel two-stage process for carotenoid production by Cordyceps militaris (Ascomycetes). International Journal of Medicinal Mushrooms, 21, 47–57.

    Article  PubMed  Google Scholar 

  80. Yang, S., & Zhang, H. (2016). Optimization of the fermentation process of Cordyceps sobolifera Se-CEPS and its anti-tumor activity in vivo. Journal of Biological Engineering, 10, 1–9. https://doi.org/10.1186/s13036-016-0029-0

    Article  CAS  Google Scholar 

  81. Chen, B., Sun, Y., Luo, F., & Wang, C. (2020). Bioactive metabolites and potential mycotoxins produced by cordyceps fungi: a review of safety. Toxins (Basel), 12, 1–13. https://doi.org/10.3390/toxins12060410

    Article  CAS  Google Scholar 

  82. Lou, H., Lin, J., Guo, L., Wang, X., Tian, S., Liu, C., Zhao, Y., & Zhao, R. (2019). Advances in research on Cordyceps militaris degeneration. Applied Microbiology and Biotechnology, 103, 7835–7841. https://doi.org/10.1007/s00253-019-10074-z

    Article  CAS  PubMed  Google Scholar 

  83. Yin, J., Xin, X., Weng, Y., & Gui, Z. (2017). Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS ONE. https://doi.org/10.1371/journal.pone.0186279

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang, G., & Liang, Y. (2013). Improvement of fruiting body production in Cordyceps militaris by molecular assessment. Archives of Microbiology, 195, 579–585. https://doi.org/10.1007/s00203-013-0904-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kondapalli Vamsi Krishna would acknowledge the fellowship from KSTePS, Department of Science and Technology (DST), Govt. of Karnataka for fellowship to pursue his PhD work.

Funding

This research does not have any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hesam Kamyab, Shreeshivadasan Chelliapan or Alok Malaviya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent for Publication

All authors agree to the submission of manuscript to Industrial Crops and Products.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, K.V., Balasubramanian, B., Park, S. et al. Conservation of Endangered Cordyceps sinensis Through Artificial Cultivation Strategies of C. militaris, an Alternate. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01154-1

Keywords

Navigation