Skip to main content
Log in

Production of Cellulases by Phanerochaete sp. Using Empty Fruit Bunches of Palm (EFB) as Substrate: Optimization and Scale-Up of Process in Bubble Column and Stirred Tank Bioreactors (STR)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The goal of this study was to screen microorganisms that are potential producers of cellulases, determine optimal conditions for production of these enzymes, and scale up the process, using empty fruit bunches (EFB) as a substrate. Strains of Trichoderma sp., Aspergillus niger, Phanerochaete sp., Ganoderma sp. and Lentinus sp. were evaluated for their ability to produce cellulolytic enzyme complexes under submerged with suspended solids fermentation (SSdF). Among these microorganisms, Phanerochaete sp. (PH-HD), which is already known to be a good producer of lignolytic enzymes, presented the highest capacity for cellulase production. The highest level of cellulase production by Phanerochaete sp. was observed on the 4th day of fermentation at 28 °C and pH 5.7, reaching a value of FPase activity of 364 IU L−1 using 15 g L−1 of EFB as a carbon source, 2 g L−1 of urea as a nitrogen source, 4 g L−1 of KH2PO4, and microcrystalline cellulose Avicel® PH-101 as an inducer (2 g L−1). This study shows the great potential of Phanerochaete sp. for producing cellulolytic enzymes, as well as the feasibility of using EFB under suspended solids fermentation in the production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Uihlein, A., Schebek, L.: Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenergy 33, 793–802 (2009)

    Article  Google Scholar 

  2. Alvarado-Morales, M., Terra, J., Gernaey, K.V., Woodley, J.M., Gani, R.: Biorefining: computer aided tools for sustainable design and analysis of bioethanol production. Chem. Eng. Res. Des. 87, 1171–1183 (2009)

    Article  Google Scholar 

  3. Brehmer, B., Boom, R.M., Sanders, J.: Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries. Chem. Eng. Res. Des. 87, 1103–1119 (2009)

    Article  Google Scholar 

  4. Sannigrahi, P., Pu, Y., Ragauskas, A.: Cellulosic biorefineries—unleashing lignin opportunities. Curr. Opin. Environ. Sustain 2, 383–393 (2010)

    Article  Google Scholar 

  5. Sánchez, O.J., Cardona, C.: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270–5295 (2008)

    Article  Google Scholar 

  6. González-García, S., Gasol, C.M., Gabarrell, X., Rieradevall, J., Moreira, M.T., Feijoo, G.: Environmental aspects of ethanol-based fuels from Brassica carinata: a case study of second generation ethanol. Renew. Sustain. Energy Rev. 13, 2613–2620 (2009)

    Article  Google Scholar 

  7. Pérez, J., Muñoz-Dorado, J., de la Rubia, T., Martínez, J.: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5, 53–63 (2002)

    Article  Google Scholar 

  8. Rutz, D., Janssen, R.: Biofuel Technology Handbook. WIP Renewable Energies, Germany (2008)

    Google Scholar 

  9. Zhang, P.Y.H.: Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 35, 367–375 (2008)

    Article  Google Scholar 

  10. Saini, J.K., Saini, R., Tewari, L.: Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech 5, 337–353 (2015)

    Google Scholar 

  11. Chiesa, S., Gnansounou, E.: Use of empty fruit bunches from the Oil Palm for bioethanol production: a thorough comparison between dilute acid and dilute alkali pretreatment. Bioresour. Technol. 159, 355–364 (2014)

    Article  Google Scholar 

  12. Jung, Y.H., Kim, S., Yang, T.H., Lee, H.J., Seung, D., Park, Y.C.: Aqueous ammonia pretreatment, saccharification and fermentation evaluation of oil palm fronds for ethanol production. Bioprocess Biosyst. Eng. 35, 1467–1475 (2012)

    Article  Google Scholar 

  13. Kang Q., Appels L., Tan T., Dewil R.: Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci. World J. 2014, 1–13 (2014)

    Google Scholar 

  14. Juturu, V., Wu, J.C.: Microbial cellulases: engineering, production and applications. Renew. Sustain. Energy Rev. 33, 188–203 (2014)

    Article  Google Scholar 

  15. Sadhu, S., Maiti, T.K.: Cellulase production by bacteria: a review. Br. Microbiol. Res. J. 3(3), 235–258 (2013)

    Article  Google Scholar 

  16. Verardi, A., Bari, I., Ricca, E., Calabrò, V.: Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In: Lima, A.P., Natalense, P.P. (eds.) Bioethanol, pp. 95–122. InTech-Open Access Publisher, Rijeka (2012). doi:10.5772/23987

    Google Scholar 

  17. Sternberg, D., Mandels, G.R.: Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J. Bacteriol. 139, 761–769 (1979)

    Google Scholar 

  18. Chen, C., Wayman, M.: Novel inducers derived from starch for cellulase production by Trichoderma reesei. Process Biochem. 27, 327–334 (1992)

    Article  Google Scholar 

  19. Kuhad R.C., Gupta R., Singh A.: Microbial cellulases and their industrial applications. Enzyme Res. 2011, (2011). doi:10.4061/2011/280696

  20. Jørgensen, H., Mørkeberg, A., Krogh, K.B.R., Olsson, L.: Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb. Technol. 36, 42–48 (2005)

    Article  Google Scholar 

  21. Krogh, K.B.R., Mørkeberg, A., Jørgensen, H., Frisvad, J.C., Olsson, L.: Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol. 113–116, 389–401 (2004)

    Article  Google Scholar 

  22. Zhi, Z., Wang, H.: White-rot fungal pretreatment of wheat straw with Phanerochaetechrysosporium for biohydrogen production: simultaneous saccharification and fermentation. Bioprocess Biosyst. Eng. 37, 1447–1458 (2014)

    Article  Google Scholar 

  23. Uzcategui, E., Raices, M., Montesino, R., Johansson, G., Pettersson, G., Eriksson, K.E.: Pilot-scale production and purification of the cellulolytic enzyme system from the white-rot fungus Phanerochaetechrysosporium. Biotechnol. Appl. Biochem. 13, 323–334 (1991)

    Google Scholar 

  24. Kim, D.M., Cho, E.J., Kim, J.W., Lee, Y.W., Chung, H.J.: Production of cellulases by Penicillium sp. in a solid-state fermentation of oil palm empty fruit bunch. Afr. J. Biotechnol. 13, 145–155 (2014)

    Article  Google Scholar 

  25. Baharuddin, A.S., Nafis, M., Razak, A., Hock, L.S., Ahmad, M.N.: Isolation and characterization of thermophilic cellulase-producing bacteria from empty fruit bunches-palm oil mill effluent compost. Am. J. Appl. Sci. 7, 56–62 (2010)

    Article  Google Scholar 

  26. Alam, M.Z., Muhammad, N., Mahmat, M.E.: Production of cellulase from oil palm biomass substrate by solid state bioconversion. Am. J. Appl. Sci. 2, 569–572 (2005)

    Article  Google Scholar 

  27. Mrudula, S., Murugammal, R.: Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz. J. Microbiol. 42, 1119–1127 (2011)

    Article  Google Scholar 

  28. Li, X., Yang, H., Roy, B., Park, E.Y., Jiang, L., Wang, D., Miao, Y.: Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol. Res. 165, 190–198 (2010)

    Article  Google Scholar 

  29. Salmon, D.N.X., Spier, M.R., Soccol, C.R., Vandenberghe, L.P.D.S., WeingartnerMontibeller, V., Bier, M.C.J., et al.: Analysis of inducers of xylanase and cellulase activities production by Ganodermaapplanatum LPB MR-56. Fungal Biol. 118, 655–662 (2014)

    Article  Google Scholar 

  30. Mary, M., James, W.: The Production of Cellulases. Advances in chemistry, Massachusetts (2009)

    Google Scholar 

  31. Ghose, T.K.: Measurement of cellulase activities. Int. Union Pure Appl. Chem. 59, 257–268 (1987)

    Google Scholar 

  32. Rodrigues-Gomez, D., Hobley, T.J.: Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30? World J. Microbiol. Biotechnol. 29, 2157–2165 (2013)

    Article  Google Scholar 

  33. Ashter, M., Capdevilla, C., Corrieu, G.: Control on lignin peroxidase production by Phanerochaete chrysosporium INA-12 by temperature shifting. Appl. Environ. Microbiol. 54, 3194–3196 (1988)

    Google Scholar 

  34. Hatakka, A., Uusi-Rauva, A.K.: Degradation of 14C-labelled poplar wood lignin by selected white-rot fungi. Eur. J. Appl. Microbiol. Biotechnol. 17, 235–242 (1983)

    Article  Google Scholar 

  35. Umikalson, M.S., Ariff, A.B., Zulkifli, H.S., Tong, C.C., Hassan, M.A., Karim, M.A.: The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by chaetomium globosum kunze. Bioresour. Technol. 62, 1–9 (1997)

    Article  Google Scholar 

  36. Narasimha, G., Sridevi, A., Buddolla, V., Subhosh, C.M., Rajasekhar, R.B.: Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr. J. Biotechnol. 5, 472–476 (2006)

    Google Scholar 

  37. Türker, M., Mavituna, F.: Production of cellulase by freely suspended and immobilized cells of Trichodermareesei. Enzyme Microb. Technol. 9, 739–743 (1987)

    Article  Google Scholar 

  38. Ratha, J., Adthalungrong, C.: Selection of nutrient parameters for endoglucanase production from rice bran by Penicilliumsp. using Plackett-Burman design. KKU Res. J. 17, 965–971 (2012)

    Google Scholar 

  39. El-sersy, N.A., Abd-elnaby, H., Abou-elela, G.M., Ibrahim, H.A.H., El-toukhy, N.M.K.: Optimization, economization and characterization of cellulase produced by marine Streptomyces ruber. Afr. J. Biotechnol. 9, 6355–6364 (2010)

    Google Scholar 

  40. Ali, S.B.R., Muthuvelayudham, R., Viruthagiri, T.: Enhanced production of cellulase from tapioca stem using response surface methodology. Innov. Rom. Food Biotechnol. 12, 40–51 (2013)

    Google Scholar 

  41. Khalil, A.I.: Production and characterization of cellulolytic and xylanolytic enzymes from the ligninolytic white-rot fungus Phanerochaetechrysosporium grown on sugarcane bagasse. World J. Microbiol. Biotechnol. 18, 753–759 (2002)

    Article  Google Scholar 

  42. Khan, M.H., Ali, S., Fakhru’l-Razi, A., Alam, Z.: Use of fungi for the bioconversion of rice straw into cellulase enzyme. J. Environ. Sci. Heal. Part B 42, 381–386 (2007)

    Article  Google Scholar 

  43. Matkar, K., Chapla, D., Divecha, J., Nighojkar, A., Madamwar, D.: Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. Int. Biodeterior. Biodegrad. 78, 24–33 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Co-Operative Project between Vale S.A. and UFPR intitled BIOPAL—Integrated Biorefineries to Sustainable Processing of Palm—Biological Route Subproject C1—Residues from palm as substrate to production of the Cellulolytc Enzimatic Complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Rigon Spier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maceno, M.A.C., de Souza Vandenberghe, L.P., Woiciechowski, A.L. et al. Production of Cellulases by Phanerochaete sp. Using Empty Fruit Bunches of Palm (EFB) as Substrate: Optimization and Scale-Up of Process in Bubble Column and Stirred Tank Bioreactors (STR). Waste Biomass Valor 7, 1327–1337 (2016). https://doi.org/10.1007/s12649-016-9503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9503-7

Keywords

Navigation