Skip to main content
Log in

Statistical Optimization of Saccharification of Alkali Pretreated Wheat Straw for Bioethanol Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study saccharification of alkali treated wheat straw was optimized by Box–Behnken design using three variables at three levels. FTIR, XRD and Scanning electron microscopy were used to study the morphological and structural changes caused by pretreatment. A 23 factorial design was used for experiments and data was analyzed by second order polynomial regression model. Under optimized condition of 2 % wheat straw, 0.5 % enzyme concentration and 6 h of time period resulted in 40.15 % saccharification of wheat straw. The saccharified material was fermented with Saccharomyces cerevisiae which revealed that 96 h of fermentation period was best for maximum specific growth rate and specific ethanol yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saxena, R.C., Adhikari, D.K., Goyal, H.B.: Biomass-based energy fuel through biochemical routes: a review. Renew. Sustain. Energy Rev. 13, 167–169 (2009)

    Article  Google Scholar 

  2. Kumar, P., Barett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009)

    Article  Google Scholar 

  3. Cheng, K.K., Cai, B.Y., Zhang, J.A., Ling, H.Z., Zhou, Y.J., Ge, J.P., Xu, J.M.: Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem. Eng. J. 38, 105–109 (2008)

    Article  Google Scholar 

  4. Rahman, S.H.A., Choudhury, J.P., Ahmad, A.L.: Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochem. Eng. J. 30, 97–103 (2006)

    Article  Google Scholar 

  5. Nlewem, K.C., Thrash Jr, M.E.: Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switch grass. Bioresour. Technol. 101, 5426–5430 (2010)

    Article  Google Scholar 

  6. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40, 3693 (2005)

    Article  Google Scholar 

  7. Sun, R., Lawther, J.M., Banks, W.B.: Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr. Polym. 29, 325 (1996)

    Article  Google Scholar 

  8. Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F., Jin, S.: Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochem. 41, 869 (2006)

    Article  Google Scholar 

  9. Lynd, L.R., Elander, R.T., Wyman, C.E.: Likely features and costs of mature biomass ethanol technology. Appl. Biochem. Biotechnol. 57(58), 741–761 (1996)

    Article  Google Scholar 

  10. Georgieva, T., Mikkelsen, M., Ahring, B.: Ethanol production from wet exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl. Biochem. Biotechnol. 145, 99–110 (2008)

    Article  Google Scholar 

  11. Tomas-Pejo, E., Oliva, J.M., Gonzalez, A., Ballesteros, I., Ballesteros, M.: Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88, 2142–2147 (2009)

    Article  Google Scholar 

  12. Nigam, J.N.: Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol. 87, 17–27 (2001)

    Article  Google Scholar 

  13. Panagiotou, G., Olsson, L.: Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 96(2), 250–258 (2007)

    Article  Google Scholar 

  14. Jorgensen, H.: Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 153, 44–57 (2009)

    Article  Google Scholar 

  15. Balusu, R., Paduru, R.R., Kuravi, S.K., Seenayya, G., Reddy, G.: Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem. 40, 3025–3030 (2005)

    Article  Google Scholar 

  16. Bernal, C., Diaz, I., Coello, N.: Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuriaro sea. Can. J. Microbiol. 52, 445–450 (2006)

    Article  Google Scholar 

  17. Kawaguti, H.Y., Manriche, E., Sato, H.H. Application of response surface methodology for glucosyl transferase production and conversion of sucrose into isomaltose using free Erwinia sp. cells. Electron. J. Biotechnol. 9(3) (2006). http://www.ejbiotechnology.info/content/vol9/issue3/full/3/index.html. ISSN: 0717-3458

  18. Shih, I.L., Shen, M.H.: Application of response surface methodology to optimize production of poly-e-lysine by Streptomyces albulus IFO 14147. Enzyme Microbial Technol. 39, 15–21 (2006)

    Article  Google Scholar 

  19. Zhang, J., Gao, N.: Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation. J. Zhejiang Univ. Sci. 8, 98–104 (2007)

    Article  Google Scholar 

  20. Rao, K.J., Kim, C.H., Rhee, S.K.: Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem. 35, 639–647 (2000)

    Article  Google Scholar 

  21. Strobel, R.J., Sullivan, G.R.: Experimental design for improvement of fermentations. In: Demain, A.L., Davies, J.E. (eds.) Manual of industrial microbiology and biotechnology, pp. 80–93. ASM Press, Washington (1999)

    Google Scholar 

  22. Irfan, M., Abbas, S., Baig, S., Gulsher, M., Nadeem, M., Syed, Q.: Pretreatment: a potential technique to enhance the enzymatic hydrolysis. World J. Agric. Sci. 6(4), 440–445 (2010)

    Google Scholar 

  23. Irfan, M., Syed, Q., Abbas, S., Gulsher, M., Baig, S., Nadeem, M.: FTIR and SEM analysis of thermo-chemical fractionated sugarcane bagasse. Turk. J. Biochem. 36, 322–328 (2011)

    Google Scholar 

  24. Jia, L., Sun, Z., Ge, X., Xin, D., Zhang, J.: Comparison of delignifiyability and hydrolyziability of wheat straw and corn stover in aquous ammonia pretreatment. Bioresources 8, 4505–4517 (2013)

    Article  Google Scholar 

  25. Alam, M.Z., Manchur, M.A., Anwar, M.N.: Isolation, purification, characterization of cellulolytic enzymes produced by the isolate Streptomyces omiyaensis. Biol. Sci. 7, 1647–1653 (2004)

    Google Scholar 

  26. Pirt, S.J. Principles of microbes and cell cultivation. In: Parameters of growth and analysis of growth data, pp. 4–14. Blackwell, London (1975)

  27. Okpokwasili, G.C., Nweke, C.O.: Microbial growth and substrate utilization kinetics. Afr. J. Biotechnol. 5, 305–317 (2006)

    Google Scholar 

  28. Ruiz, H.A., Silva, D.P., Ruzene, D.S., Lima, L.F., Vicente, A.A., Teixeira, J.A.: Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain—effect of process conditions. Fuel 95, 528–536 (2012)

    Article  Google Scholar 

  29. Han, L., Feng, J., Zhang, S., Ma, Z., Wang, Y., Zhang, X.: Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz. J. Microbiol. 43, 53–61 (2012)

    Article  Google Scholar 

  30. Zhang, A., Liu, C., Sun, R., Xie, J.: Extratcion, purification, and characterization of lignin fraction from sugarcane bagasse. Bioresources 8, 1604–1614 (2013)

    Google Scholar 

  31. Jeoh, T., Ishizawa, C.I., Davis, M.F., Himmel, M.E., Adney, W.S., Johnson, D.K.: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98, 112–122 (2007)

    Article  Google Scholar 

  32. Barman, D.N., Haque, M.A., Kang, T.H., Kim, M.K., Kim, J., Kim, H., Yun, H.D.: Alkali pretreatment of wheat straw at boiling temperature for producing a bioethanol precursor. Biosci. Biotechnol. Biochem. 76, 2201–2207 (2012)

    Article  Google Scholar 

  33. Samuel, R., Pu, Y., Foston, M., Raguskas, A.J.: Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 1, 85–90 (2010)

    Article  Google Scholar 

  34. Kim, T.H., Kim, J.S., Sunwoo, C., Lee, Y.Y.: Pretreatment of corn stover by aquous ammonia. Bioresour. Technol. 90, 39–47 (2003)

    Article  Google Scholar 

  35. Sindhu, R., Binod, P., Satayanagalakashmi, K., Janu, K.U., Sajna, K.V., Kurien, N., Sukumaran, R.K., Pandey, A.: Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Appl. Biochem. Biotechnol. 162, 2313–2323 (2010)

    Article  Google Scholar 

  36. Asghar, U., Irfan, M., Iram, M., Huma, Z., Nelofer, R., Nadeem, M., Syed, Q.: Effect of alkaline pretreatment on delignification of wheat straw. Nat. Prod. Res. 29, 125–131 (2015)

    Article  Google Scholar 

  37. Pasma, S.A., Daik, R., Maskat, M.Y., Hassan, O.: Application of Box–Behnken design in optimization of glucose production from oil palm empty fruit bunch cellulose. Int. J. Polym. Sci. (2013). doi:10.1155/2013/104502. (Article ID 104502)

    Google Scholar 

  38. Narkprasom, N., Assavarachan, R., Wongputtisin, P. Optimization of reducing sugar production from acid hydrolysis of sugarcane bagasse by Box–Behnken design. J. Med. Bioeng. 2(4), 238–241 (2013)

    Google Scholar 

  39. Li, F., Yao, R., Wang, H., Hu, H., Zhang, R.: Process optimization for sugars production from rice straw via pretreatment with sulpher trioxide micro-thermal explosion. Bioresources 7, 3355–3366 (2012)

    Google Scholar 

  40. Maurya, D.P., Vats, S., Rai, S., Negi, S.: Optimization of enzymatic saccharification of microwave pretreated sugarcane tops through response surface methodology for biofuels. Indian J. Exp. Biol. 51, 992–996 (2013)

    Google Scholar 

  41. Turhan, O., Isci, A., Behic, M., Ozge, S., Sedat, D.: Optimization of ethanol production from microfluidized wheat straw by response surface methodology. Prep. Biochem. Biotechnol. 45, 785–795 (2015)

    Article  Google Scholar 

  42. Zhang, X., Nghiem, N.P.: Pretreatment and fractionation of wheat straw for production of fuel ethanol and value-added co-products in a biorefinery. AIMS Bioeng. 1, 40–52 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Asghar, U., Nadeem, M. et al. Statistical Optimization of Saccharification of Alkali Pretreated Wheat Straw for Bioethanol Production. Waste Biomass Valor 7, 1389–1396 (2016). https://doi.org/10.1007/s12649-016-9540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9540-2

Keywords

Navigation