Skip to main content
Log in

Effect of Nutrients on Fermentation of Pretreated Wheat Straw at very High Dry Matter Content by Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wheat straw hydrolysate produced by enzymatic hydrolysis of hydrothermal pretreated wheat straw at a very high solids concentration of 30% dry matter (w/w) was used for testing the effect of nutrients on their ability to improve fermentation performance of Saccharomyces cerevisiae. The nutrients tested were MgSO4 and nitrogen sources; (NH4)2SO4, urea, yeast extract, peptone and corn steep liquor. The fermentation was tested in a separate hydrolysis and fermentation process using a low amount of inoculum (0.33 g kg−1) and a non-adapted baker’s yeast strain. A factorial screening design revealed that yeast extract, peptone, corn steep liquor and MgSO4 were the most significant factors in obtaining a high fermentation rate, high ethanol yield and low glycerol formation. The highest volumetric ethanol productivity was 1.16 g kg−1 h−1 and with an ethanol yield close to maximum theoretical. The use of urea or (NH4)2SO4 separately, together or in combination with MgSO4 or vitamins did not improve fermentation rate and resulted in increased glycerol formation compared to the use of yeast extract. Yeast extract was the single best component in improving fermentation performance and a concentration of 3.5 g kg−1 resulted in high ethanol yield and a volumetric productivity of 0.6 g kg−1 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels, Bioproducts & Biorefining, 1, 119–134.

    Article  Google Scholar 

  2. Bayrock, D. P., & Ingledew, W. M. (2001). Journal of Industrial Microbiology & Biotechnology, 27, 87–93. doi:10.1038/sj.jim.7000167.

    Article  CAS  Google Scholar 

  3. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117. doi:10.1021/bp0340180.

    Article  CAS  Google Scholar 

  4. Larsen, J., Petersen, M. Ø., Thirup, L., Li, H. W., & Iversen, F. K. (2008). Chemical Engineering & Technology, 31, 765–772. doi:10.1002/ceat.200800048.

    Article  CAS  Google Scholar 

  5. Mohagheghi, A., Tucker, M., Grohmann, K., & Wyman, C. (1992). Applied Biochemistry & Biotechnology, 33, 67–81. doi:10.1007/BF02950778.

    Article  CAS  Google Scholar 

  6. Fan, Z. L., South, C., Lyford, K., Munsie, J., van Walsum, P., & Lynd, L. R. (2003). Bioprocess & Biosystems Engineering, 26, 93–101. doi:10.1007/s00449-003-0337-x.

    Article  CAS  Google Scholar 

  7. Tolan, J. S. (2002). Clean Technologies & Environmental Policy, 3, 339–345. doi:10.1007/s10098-001-0131-x.

    Article  Google Scholar 

  8. Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Biotechnology & Bioengineering, 96, 862–870. doi:10.1002/bit.21115.

    Article  Google Scholar 

  9. Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). Enzyme & Microbial Technology, 24, 151–159. doi:10.1016/S0141-0229(98)00101-X.

    Article  CAS  Google Scholar 

  10. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33. doi:10.1016/S0960-8524(99)00161-3.

    Article  CAS  Google Scholar 

  11. Alkasrawi, M., Rudolf, A., Liden, G., & Zacchi, G. (2006). Enzyme & Microbial Technology, 38, 279–286.

    CAS  Google Scholar 

  12. Varga, E., Klinke, H. B., Réczey, K., & Thomsen, A. B. (2004). Biotechnology & Bioengineering, 88, 567–574. doi:10.1002/bit.20222.

    Article  CAS  Google Scholar 

  13. Linde, M., Galbe, M., & Zacchi, G. (2007). Enzyme & Microbial Technology, 40, 1100–1107. doi:10.1016/j.enzmictec.2006.08.014.

    Article  CAS  Google Scholar 

  14. Yang, B., & Wyman, C. E. (2008). Biofuels, Bioproducts & Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  15. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme & Microbial Technology, 28, 835–844. doi:10.1016/S0141-0229(01)00342-8.

    Article  CAS  Google Scholar 

  16. Lau, M. W., Dale, B. E., & Balan, V. (2008). Biotechnology & Bioengineering, 99, 529–539. doi:10.1002/bit.21609.

    Article  CAS  Google Scholar 

  17. Devantier, R., Scheithauer, B., Villas-Boas, S. G., Pedersen, S., & Olsson, L. (2005). Biotechnology & Bioengineering, 90, 703–714. doi:10.1002/bit.20457.

    Article  CAS  Google Scholar 

  18. Jones, A. M., & Ingledew, W. M. (1994). Process Biochemistry, 29, 483–488. doi:10.1016/0032-9592(94)85017-8.

    Article  CAS  Google Scholar 

  19. Casey, G. P., Magnus, C. A., & Ingledew, W. M. (1984). Applied & Environmental Microbiology, 48, 639–646.

    CAS  Google Scholar 

  20. Thomas, K. C., & Ingledew, W. M. (1990). Applied & Environmental Microbiology, 56, 2046–2050.

    CAS  Google Scholar 

  21. Jørgensen, H., Olsson, L., Rønnow, B., & Palmqvist, E. A. (2002). Applied Microbiology & Biotechnology, 59, 310–317. doi:10.1007/s00253-002-1017-5.

    Article  Google Scholar 

  22. Lewis, S. M. (1996). In T. Godfrey, & S. West (Eds.), Industrial enzymology (pp. 12–48). New York: Stockton.

    Google Scholar 

  23. Linde, M., Jakobsson, E.-L., Galbe, M., & Zacchi, G. (2008). Biomass & Bioenergy, 32, 326–332. doi:10.1016/j.biombioe.2007.09.013.

    Article  CAS  Google Scholar 

  24. Verduyn, C., Postma, E., Scheffers, W. A., & Vandijken, J. P. (1992). Yeast (Chichester, England), 8, 501–517. doi:10.1002/yea.320080703.

    Article  CAS  Google Scholar 

  25. Albers, E., Larsson, C., Liden, G., Niklasson, C., & Gustafsson, L. (1996). Applied & Environmental Microbiology, 62, 3187–3195.

    CAS  Google Scholar 

  26. Thomsen, M. H., Thygesen, A., Jørgensen, H., Larsen, J., Christensen, B. H., & Thomsen, A. B. (2006). Applied Biochemistry & Biotechnology, 129–132, 448–460.

    Google Scholar 

  27. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & et al. (2008). National Renewable Energy Laboratory, Golden, CO, USA, Technical Report NREL/TP-510-42618. Available from http://www.nrel.gov/biomass/pdfs/42618.pdf.

  28. Kristensen, J. B., Felby, C., & Jørgensen, H. (2008). Applied Biochemistry & Biotechnology. http://dx.doi.org/10.1007/s12010-008-8375-0.

  29. Wang, F.-Q., Gao, C.-J., Yang, C.-Y., & Xu, P. (2007). Biotechnology Letters, 29, 233–236. doi:10.1007/s10529-006-9220-6.

    Article  CAS  Google Scholar 

  30. Jones, R. P., & Greenfield, P. F. (1984). Process Biochemistry, 19, 48.

    CAS  Google Scholar 

  31. Brandberg, T., Karimi, K., Taherzadeh, M. J., Franzen, C. J., & Gustafsson, L. (2007). Biotechnology & Bioengineering, 98, 80–90. doi:10.1002/bit.21410.

    Article  CAS  Google Scholar 

  32. Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Applied Microbiology & Biotechnology, 63, 258–266. doi:10.1007/s00253-003-1444-y.

    Article  CAS  Google Scholar 

  33. Thomsen, M. H. (2005). Applied Microbiology & Biotechnology, 68, 598–606. doi:10.1007/s00253-005-0056-0.

    Article  CAS  Google Scholar 

  34. Brehmer, B., Bals, B., Sanders, J., & Dale, B. (2008). Biotechnology & Bioengineering, 101, 49–61. doi:10.1002/bit.21881.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Technician Britta Skov is gratefully acknowledged for assisting with the experimental work. Inbicon is thanked for supplying the pretreated material and Novozymes is thanked for supplying enzymes. The work was financially supported by Energinet.dk PSO contract 2006-1-6412 and other partners in the project, Inbicon, Risø-DTU and BioCentrum-DTU are thanked for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Jørgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, H. Effect of Nutrients on Fermentation of Pretreated Wheat Straw at very High Dry Matter Content by Saccharomyces cerevisiae . Appl Biochem Biotechnol 153, 44–57 (2009). https://doi.org/10.1007/s12010-008-8456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8456-0

Keywords

Navigation