Skip to main content
Log in

Core–envelope model of an anisotropic strange star with density-dependent bag (B) parameter

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Making use of a particular solution for a class of relativistic compact stars, we develop a core–envelope model where the core region is assumed to be composed of strange matter admitting an equation of state \(p=\frac{1}{3}(\rho -4B)\). In our model, we assume the bag parameter B of the MIT bag model to be density-dependent. For an anisotropic stellar configuration with two separate regions—the quark core-enveloped by baryonic matter—we analyse the effects of density and anisotropy on the bag value. Moreover, the effects of the background geometry of the configuration are studied. The physical features of the model are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. R C Tolman Phys. Rev. 55 364 (1939)

    Article  ADS  Google Scholar 

  2. J R Oppenheimer and G M Volkoff Phys. Rev. 55 374 (1939)

    Article  ADS  Google Scholar 

  3. Ch Kettner, F Weber, M K Weigel and N K Glendenning Phys. Rev. D 51 1440 (1995)

    Article  ADS  Google Scholar 

  4. M Dey, I Bombaci, J Dey, S Ray and B C Samanta Phys. Lett. B 438, 123 (1998); Addendum : 447, 352 (1999); Erratum : 467, 303 (1999)

  5. E Witten Phys. Rev. D 30 272 (1984)

    Article  ADS  Google Scholar 

  6. E Farhi and R L Jaffe Phys. Rev. D 30 2379 (1984)

    Article  ADS  Google Scholar 

  7. I Bombaci Phys. Rev. C 55 1587 (1997)

    Article  ADS  Google Scholar 

  8. X D Li, I Bombaci, M Dey, J Dey and E P J Van Den Heeuvel Phys. Rev. Lett. 83 3776 (1999)

    Article  ADS  Google Scholar 

  9. X D Li, S Ray, J Dey, M Dey and I Bombaci Astrophys. J 527 L51 (1999)

    Article  ADS  Google Scholar 

  10. R X Xu, X B Xu and X J Wu Chin Phys. Lett. 18 837 (2001)

    Google Scholar 

  11. J A Pons et al Astrophys. J. 564 981 (2002)

    Article  ADS  Google Scholar 

  12. C Alcock, E Farhi and A Olinto Astrophys. J 310 261 (1986)

    Article  ADS  Google Scholar 

  13. R X Xu, G J Qiao and B Zhang arXiv:astro-ph/9909484v1, (1999)

  14. V V Usov Phys. Rev. Lett. 80 230 (1998)

    Article  ADS  Google Scholar 

  15. K S Cheng, Z G Dai and T Lu Int. J. Mod. Phys. D 7 139 (1998)

    Article  ADS  Google Scholar 

  16. T C Phukon Phys. Rev. D 62 023002 (2000)

    Article  ADS  Google Scholar 

  17. N Itoh Prog. Theor. Phys. 44 291 (1970)

    Article  ADS  Google Scholar 

  18. A R Bodmer Phys. Rev. D 4 1601 (1971)

    Article  ADS  Google Scholar 

  19. J Kapusta Finite-Temperature Field Theory (Cambridge: Cambridge University Press) (1994)

    MATH  Google Scholar 

  20. M Alford, M Barby, M Paris and S Reddy Astrophys. J. 629 969 (2005)

    Article  ADS  Google Scholar 

  21. R Sharma and S Mukherjee Mod. Phys. Lett. A 17 2535 (2002)

    Article  ADS  Google Scholar 

  22. K N Singh, F Rahaman and N Pant Indian. J. Phys. 96 209 (2022)

    Article  ADS  Google Scholar 

  23. E Annala, T Gorda, A Kurkela, J Nättilä and A Vuorinen Nat. Phys. 16 907 (2020)

    Article  Google Scholar 

  24. P M Takisa, S D Maharaj and C Mulangu Pramana. J. Phys. 92 40 (2019)

    Article  ADS  Google Scholar 

  25. A S Lighuda, J M Sunzu, S D Maharaj and E W Mureithi Res. Astron. Astrophys. 21 310 (2021)

    Article  ADS  Google Scholar 

  26. A S Lighuda, J M Sunzu, S D Maharaj and E W Mureithi Astrophys. Space Sci. 366 76 (2021)

    Article  ADS  Google Scholar 

  27. S Mukherjee, B C Paul and N K Dadhich Class. Quantum Gravit. 14 3475 (1997)

    Article  ADS  Google Scholar 

  28. P C Vaidya and R Tikekar J. Astrophys. Astron. 3 325 (1982)

    Article  ADS  Google Scholar 

  29. R Tikekar J. Math. Phys. 31 2454 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. M C Sabu A study of some spacetimes of gravitational significance, (Ph.D. thesis, Sardar Patel University, India, 1998)

  31. P K Chattopadhyay and B C Paul Astrophys. Space Sci. 361 145 (2016)

    Article  ADS  Google Scholar 

  32. L Lindblom Phys. Rev. D 58 024008 (1998)

    Article  ADS  Google Scholar 

  33. F Weber arXiv:astro-ph/9910371v1 (1999)

  34. U Heinz Nucl. Phys. A 685 414 (2001)

    Article  ADS  Google Scholar 

  35. B Müller and J Rafelski Phys. Lett. B 101 111 (1981)

    Article  ADS  Google Scholar 

  36. N Prasad and R S Bhalerao Phys. Rev. D 69 103001 (2004)

    Article  ADS  Google Scholar 

  37. S Chakrabarty, S Raha and B Sinha Phys. Lett. B 229 112 (1989)

    Article  ADS  Google Scholar 

  38. S Chakrabarty Phys. Rev. D 43, 627 (1991); Phys. Rev. D 48, 1409 (1993); Phys. Rev. D 54, 1306 (1996)

  39. G X Peng, H C Chiang, B S Zou, P J Ning and S J Luo Phys. Rev. C 62 025801 (2000)

    Article  ADS  Google Scholar 

  40. Y X Liu, D F Gao and H Guo Nucl. Phys. A 695 353 (2001)

    Article  ADS  Google Scholar 

  41. G F Burgio, M Baldo, P K Sahu, A B Santra and H J Schulze Phys. Lett. B 526 19 (2002)

    Article  ADS  Google Scholar 

  42. R Aguirre Phys. Lett. B 559 207 (2003)

    Article  ADS  Google Scholar 

  43. L Herrera and N O Santos Phys. Rep. 286 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  44. R Ruderman Annu. Rev. Astron. Astrophys. 10 427 (1972)

    Article  ADS  Google Scholar 

  45. L Herrera Phys. Rev. D 101 104024 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. M F Zhu, G H Liu, Z Yu, Y Zu and W T Song Sci. China Series G 52 1506 (2009)

    Article  Google Scholar 

  47. O G Benvenuto and G Lugones Phys. Rev. D 51 1989 (1995)

    Article  ADS  Google Scholar 

  48. R Sharma and S Karmakar Int. J. Mod. Phys. D 15 405 (2006)

    Article  ADS  Google Scholar 

  49. R Sharma, S Mukherjee and S D Maharaj Gen. Relativ. Gravit. 33 999 (2001)

    Article  ADS  Google Scholar 

  50. F Özel, T Güver and D Psaltis Astrophys. J. 693 1775 (2009)

    Article  ADS  Google Scholar 

  51. B C Paul and R Tikekar Gravit. Cosmol. 11 244 (2005)

    ADS  Google Scholar 

  52. P M Takisa and S D Maharaj Astrophys. Space Sci. 361 262 (2016)

    Article  ADS  Google Scholar 

  53. R K Bisht, S Gedela, N Pant and N Tewari Res. Astron. Astrophys. 21 162 (2021)

    Article  ADS  Google Scholar 

  54. S A Mardan, I Noureen and A Khalid Eur. Phys. J. C 81 912 (2021)

    Article  ADS  Google Scholar 

  55. P S Negi, A K Pande and M C Durgapal Gen. Relativ. Gravit. 22 735 (1990)

    Article  ADS  Google Scholar 

  56. T Gangopadhyay, S Ray, X D Li, J Dey and M Dey Mon. Not. R. Astron. Soc 431 3216 (2013)

    Article  ADS  Google Scholar 

  57. S Carroll Spacetime and Geometry, An Introduction to General Relativity, (Pearson: Essex) p 174 (2014)

  58. R P Pant, S Gedela, R K Bisht and N Pant Eur. Phys. J. C 79 602 (2019)

    Article  ADS  Google Scholar 

  59. S K Maurya, A Banerjee, M K Jasim, J Kumar, A K Prasad and A Pradhan Phys. Rev. D 99 044029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  60. L Herrera Phys. Lett. A 165 206 (1992)

    Article  ADS  Google Scholar 

  61. H Abreu, H Hernández and L A Núñez Class. Quantum Gravit. 24 4631 (2007)

    Article  ADS  Google Scholar 

  62. H Heintzmann and W Hillebrandt Astron. Astrophys. 38 51 (1975)

    ADS  Google Scholar 

  63. J Madsen Physics and Astrophysics of Strange Quark Matter, (Lect. Notes Phys.) 516 162 (1999)

    ADS  Google Scholar 

  64. M C Miller et al ApjL 887 L24 (2019)

    Article  ADS  Google Scholar 

  65. T E Riley et al ApjL 818 L27 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

BD and KBG are thankful to CSIR for providing fellowships vide No: 09/1219 (0005)/2019 EMR-I and 09/1219(0004)/2019 EMR-I, respectively. RS gratefully acknowledges support from the IUCAA, Pune, India, under its Visiting Research Associateship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Chattopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Goswami, K.B., Chattopadhyay, P.K. et al. Core–envelope model of an anisotropic strange star with density-dependent bag (B) parameter. Indian J Phys 97, 2273–2287 (2023). https://doi.org/10.1007/s12648-023-02586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02586-2

Keywords

Navigation