Skip to main content
Log in

Compact relativistic star with quadratic envelope

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We consider an uncharged anisotropic stellar model with two distinct equations of state in general relativity. The core layer has a quark matter distribution with a linear equation of state. The envelope layer has a matter distribution which is quadratic. The interfaces between the core, envelope and the vacuum exterior regions are smoothly matched. We find radii, masses and compactifications for five different compact objects which are consistent with other investigations. In particular, the properties of the pulsar object PSR J1614-2230 are studied. The metric functions and the matter distribution are regular throughout the star. In particular, it is shown that the radii associated with the core and the envelope can change for different parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  2. E Farhi and R L Jaffe, Phys. Rev. D 30, 2379 (1984)

    Article  ADS  Google Scholar 

  3. R Sharma and S Mukherjee, Mod. Phys. Lett. A 17, 2535 (2002)

    Article  ADS  Google Scholar 

  4. M Nauenberg and G Chapline, Astrophys. J. 179, 277 (1979)

    Article  ADS  Google Scholar 

  5. C Rhoades and R Ruffini, Phys. Rev. Lett. 32, 324 (1974)

    Article  ADS  Google Scholar 

  6. J B Hartle, Phys. Rep. 46, 201 (1978)

    Article  ADS  Google Scholar 

  7. T Gangopadhyay, S Ray, X-D Li, J Dey and M Dey, Mon. Not. R. Astron. Soc. 431, 3216 (2013)

    Article  ADS  Google Scholar 

  8. S Hansraj, S D Maharaj and S Mlaba, J. Math. Phys. 131, 4 (2016)

    Google Scholar 

  9. P Bhar, M Govender and R Sharma, Eur. Phys. J. C 77, 109 (2017)

    Article  ADS  Google Scholar 

  10. A A Usmani, F Rahaman, S Ray, K K Nandi, P K F Kuhfittig, S A Rakib and Z Hasan, Phys. Lett. B 701, 388 (2011)

    Article  ADS  Google Scholar 

  11. F Rahaman, S Ray, A A Usmani and S Islam, Phys. Lett. B 707, 319 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. F Rahaman, A A Usmani, S Ray and S Islam, Phys. Lett. B 717, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. F Rahaman, S Chakraborty, S Ray, A A Usmani and S Islam, Int. J. Theor. Phys. 54, 50 (2015)

    Article  Google Scholar 

  14. R Chan, M F A da Silva and P Rocha, Gen. Relativ. Gravit. 43, 2223 (2011)

    Article  ADS  Google Scholar 

  15. M C Durgapal and G L Gehlot, Phys. Rev. D 183, 1102 (1969)

    Article  ADS  Google Scholar 

  16. M C Durgapal and G L Gehlot, J. Phys. A 4, 749 (1971)

    Article  ADS  Google Scholar 

  17. R S Fuloria, M C Durgapal and S C Pande, Astrophys. Space Sci. 148, 95 (1988)

    Article  ADS  Google Scholar 

  18. R S Fuloria, M C Durgapal and S C Pande, Astrophys. Space Sci. 151, 255 (1989)

    Article  ADS  Google Scholar 

  19. P S Negi, A K Pande and M C Durgapal, Gen. Relativ. Gravit. 22 735 (1989)

    Article  ADS  Google Scholar 

  20. P S Negi, A K Pande and M C Durgapal, Astrophys. Space Sci. 167 41 (1990)

    Article  ADS  Google Scholar 

  21. R Sharma and S Mukherjee, Mod. Phys. Lett. A 16, 1049 (2001)

    Article  ADS  Google Scholar 

  22. B C Paul and R Tikekar, Gravit. Cosmol. 11, 244 (2005)

    ADS  Google Scholar 

  23. R Tikekar and V O Thomas, Pramana – J. Phys. 64, 5 (2005)

    Google Scholar 

  24. V O Thomas, B S Ratanpal and P C Vinodkumar, Int. J. Mod. Phys. D 14, 85 (2005)

    Article  ADS  Google Scholar 

  25. R Tikekar and K Jotania, Gravit. Cosmol. 15, 129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. P Mafa Takisa and S D Maharaj, Astrophys. Space Sci. 361, 262 (2016)

    Article  ADS  Google Scholar 

  27. P Mafa Takisa and S D Maharaj, Astrophys. Space Sci. 343, 569 (2013)

    Article  ADS  Google Scholar 

  28. S Thirukkanesh and F C Ragel, Pramana – J. Phys. 81, 275 (2013)

    Google Scholar 

  29. P Mafa Takisa, S Ray and S D Maharaj, Astrophys. Space Sci. 350, 733 (2014)

    Article  ADS  Google Scholar 

  30. T Feroze and A A Siddiqui, Gen. Relativ. Gravit. 43, 1025 (2011)

    Article  ADS  Google Scholar 

  31. S D Maharaj and P Mafa Takisa, Gen. Relativ. Gravit. 44, 1419 (2012)

    Article  ADS  Google Scholar 

  32. P Mafa Takisa, S D Maharaj and S Ray, Astrophys. Space Sci. 354, 463 (2014)

    Article  ADS  Google Scholar 

  33. H A Buchdahl, Astrophys. Space Sci. 116, 1027 (1959)

    Google Scholar 

  34. R Sharma and S D Maharaj, Mon. Not. R. Astron. Soc. 375, 1265 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PMT is grateful to the National Research Foundation and Mangosuthu University of Technology for financial aid. SDM acknowledges that this work is based on the research supported by the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation. CM thanks the National Research Foundation and Mangosuthu University of Technology for financial aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S D Maharaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takisa, P.M., Maharaj, S.D. & Mulangu, C. Compact relativistic star with quadratic envelope. Pramana - J Phys 92, 40 (2019). https://doi.org/10.1007/s12043-018-1695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1695-x

Keywords

PACS Nos

Navigation