Skip to main content
Log in

Three-layered relativistic hybrid star with distinct equation of states

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we are proposing a three-layered hybrid compact star model with a distinct equation of states (EOSs) in the realm of general relativity. The core is assumed to be quark matter described by the MIT-bag model, an intermediate layer filled with neutron liquid and a thin envelope of matter satisfying a quadratic EoS. Three pairs of interfaces are matched by using Darmois–Israel conditions. For better and easier tuning, we have chosen \(\alpha \) as a free parameter for core, k for intermediate layer and g and t for envelope, while the rest of the constant parameters are linked with mass and radius. Most of the physical parameters such as density, pressures and EoS parameters are continuous in all the three regions; however, \(v_t^2\) and stability factor are discontinuous. This is because of the non-differentiability of \(p_t\)’s at the interfaces. Hence, stability is not defined at the interfaces. Further, matching of \(p_t\)’s can be performed by tuning suitable values of the free parameters \(\alpha , ~k, ~g\) and t. Further, the most prevailing aspect of this method is that we can arbitrarily choose the radii of each region. As per Buchler and Barkat (PRL 27: 48, 1971) and Baym et al.(PRL 175: 225, 1971) , there exists a smooth transition density between quark core and intermediate neutron-liquid layer at about \(\rho > 10^{14}~{\mathrm{g/cc}}\). Our calculation shows that the smooth transition density is at about \(\rho _I=4.16 \times 10^{14}~ {\mathrm{g/cc}}\) which is in good agreement with the above prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. V L Ginzberg Usp. Fiz. Nauk 103 393 (1971)

  2. M Ruderman Nature 218 1128 (1968)

  3. J Nemeth and D W L Sprung Phys . Rev. 176 1496 (1968)

  4. V L Ginzburg and D A Kirzhnits Zh. Eksp. Teor. Fiz. 47 2006 (1964)

  5. V L Ginzburg Usp. Fiz. Nauk 97 601 (1969)

    Article  ADS  Google Scholar 

  6. A B Migdal Zh. Eksp. Teor. Fiz. 37 249 (1959)

    MathSciNet  Google Scholar 

  7. R A Wolf Ap. J. 145 834 (1966)

    Article  ADS  Google Scholar 

  8. G Baym, C Pethick anf D. Pines Nature 224 673 (1969)

    Article  ADS  Google Scholar 

  9. N Itoh Progr. Theor. Phys. 42 1478 (1969)

    Article  ADS  Google Scholar 

  10. M Hoffberg, A E Glassgold, R W Richardson and M Ruderman Phys. Rev. Lett. 24 775 (1970)

  11. N K Glendenning Phys. Rev. D 46 1274 (1992)

    Article  ADS  Google Scholar 

  12. M Alford Annu. Rev. Nucl. Part. Sci. 51 131 (2001)

    Article  ADS  Google Scholar 

  13. P F Bedaque and T Schafer Nucl. Phys. A 697 802 (2002)

    Article  ADS  Google Scholar 

  14. R D Pisalski and F Wilczek Phys. Rev. Lett. 29 338 (1984)

    ADS  Google Scholar 

  15. R V Gavai, J Potvin and S Sanielevici Phys. Phys. Rev. Lett. 58 2519 (1987)

    Article  ADS  Google Scholar 

  16. J Arponen Nuclear Physics A 191 257 (1972)

    Article  ADS  Google Scholar 

  17. W D Langer, L C Rosen, J M Cohen and A G W Cameron Astrophys. Space Sci. 5 259 (1969)

    Article  ADS  Google Scholar 

  18. H A Bethe, G Barner and K Sato Astron. Astrophys. 7 279 (1970)

    ADS  Google Scholar 

  19. A G W Cameron Ann. Rev. Astron. Astrophys. 8 176 (1970)

    Article  ADS  Google Scholar 

  20. J R Buchler and Z Barkat Astrophys. Lett. 7 167 (1971); Phys. Rev. Lett. 27 48 (1971)

  21. G Baym, H A Bethe and C J Pethick Nucl. Phys. A 175 225 (1971)

    Article  ADS  Google Scholar 

  22. R B Jacobsen, C A Z Vasconcellos and B E J Bodmann Astronomy and Relativistic Astrophysics : New Phenomena and New States of Matter in the Universe (World Scientific ), https://doi.org/10.1142/9789814304887_0005

  23. E Witten Phys. Rev. D 30 272 (1984)

    Article  ADS  Google Scholar 

  24. E Farhi and R L Jaffe Phys. Rev. D 30 2379 (1984)

    Article  ADS  Google Scholar 

  25. I Bombaci Phys. Rev. C 55 1587 (1997)

    Article  ADS  Google Scholar 

  26. M Dey, I Bombaci, J Dey, S Ray and B C Samanta Phys. Lett. B 438 123 (1998)

    Article  ADS  Google Scholar 

  27. X D Li, I Bombaci, M Dey, J Dey, E P J van den Heeuvel Phys. Rev. Lett. 83 3776 (1999)

    Article  ADS  Google Scholar 

  28. X D Li, S Ray, J Dey and I Bombaci Astrophys. J. 527 L51 (1999)

    Article  ADS  Google Scholar 

  29. R X Xu, X B Xu and X J Wu Chin. Phys. Lett. 18 837 (2001)

    Article  ADS  Google Scholar 

  30. J A Pons et al. Astrophys. J. 564 981 (2002)

    Article  ADS  Google Scholar 

  31. K S Cheng, Z G Dai and T Lu Int. J. Mod. Phys. D 7 139 (1998)

    Article  ADS  Google Scholar 

  32. Ch Kettner, F Weber, M K Weigel and N K Glendennin Phys. Rev. D 51 1440 (1995)

    Article  ADS  Google Scholar 

  33. T C Phukon Phys. Rev. D 62 023002 (2000)

    Article  ADS  Google Scholar 

  34. J E Horvath and J A D F Pacheco Int. J. Mod. Phys. D 7 19 (1998)

    Article  ADS  Google Scholar 

  35. M Colpi, S L Shapiro and I Wasserman Phys. Rev. Lett. 57 2485 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  36. D Kastor and J Traschen Phys. Rev. D 44 3791 (1991)

    Article  ADS  Google Scholar 

  37. A Drago and A Lavagno Phys. Lett. B 511 229 (2001)

    Article  ADS  Google Scholar 

  38. M Nauenberg and G Chapline Astrophys. J. 179 277 (1973)

    Article  ADS  Google Scholar 

  39. C Rhodes and R Ruffini Phys. Rev. 32 324 (1974

    ADS  Google Scholar 

  40. B R Iyer and C V Vishveshwara A Random Walk in Relativity and Cosmology (Wiley Eastern Limited, 1985), p. 109

  41. H Bondi Proc. Roy. Soc. A 282 303 (1964)

    ADS  MathSciNet  Google Scholar 

  42. P K Das and J V Narlikar Monthly Notices Roy. Astron. Soc. 171 87 (1975)

    Article  ADS  Google Scholar 

  43. M C Durgapal, A K Pande, R Banerjee and K Pandey. Mon. Notices Roy. Astron. Soc. 193 641 (1980a)

    Article  ADS  Google Scholar 

  44. M C Durgapal, A K Pande, R Banerjee and K Pandey. J. Phys. A: Math. Gen. 13 1792 (1980b)

    Google Scholar 

  45. P C Vaidya and R Tikekar J. Astrophys. Astron. 3 325 (1982)

    Article  ADS  Google Scholar 

  46. P S Negi, A K Pande and M C Durgapal Gen. Relativ. Gravit. 22 735 (1989)

    Article  ADS  Google Scholar 

  47. P S Negi, A K Pande and M C Durgapal Astrophys. Space Sci. 167 41 (1990)

    Article  ADS  Google Scholar 

  48. R Sharma and S Mukherjee Mod. Phys. Lett. A 17 2535 (2002)

    Article  ADS  Google Scholar 

  49. R Tikekar and K Jotania Grav. Cosmol. 15 129 (2009)

    Article  ADS  Google Scholar 

  50. R Tikekar and V O Thomas Pramana J. Phys. 64 05 (2005)

  51. B C Paul and R Tikekar Grav. Cosmol. 11 244 (2005)

    ADS  Google Scholar 

  52. S Hansraj, S D Maharaj and S Mlabac Eur. Phys. J. Plus 131 4 (2016)

  53. P M Takisa, S D Maharaj and C Mulangu Pramana J. Phys. 92 40 (2019)

  54. R. P. Pant, S. Gedela, R. K. Bisht, N. Pant, Eur. Phys. J. C 79, 602 (2019)

    Article  ADS  Google Scholar 

  55. S Gedela, N Pant, J Upreti and R P Pant Eur. Phys. J. C 79 566 (2019)

    Article  ADS  Google Scholar 

  56. Y K Gupta and M K Jasim Astrophys. Space Sci. 272 403 (2000)

    Article  ADS  Google Scholar 

  57. Y K Gupta and M K Jasim Astrophys. Space Sci. 283 337 (2003)

    Article  ADS  Google Scholar 

  58. S K Maurya et al. Phys. Rev. D 99 044029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  59. J C Collins and M J Perry Phys. Rev. Lett. 34 1353 (1975)

    Article  ADS  Google Scholar 

  60. N Itoh Progress Theor. Phys. 44 291 (1970)

    Article  ADS  Google Scholar 

  61. A B Migdal Soviet Phys. JETP 34 1184 (1971)

    ADS  MathSciNet  Google Scholar 

  62. R F Sawyer Phys. Rev. Lett. 29 382 (1972)

    Article  ADS  Google Scholar 

  63. A I Sokolov Soviet Phys. JETP 52 575 (1980)

    ADS  Google Scholar 

  64. J B Hartle, R Sawyer and D Scalapino Astrophys. J. 199 471 (1975)

    Article  ADS  Google Scholar 

  65. R Sawyer and D Scalapino Phys. Rev. D 7 953 (1973)

    Article  ADS  Google Scholar 

  66. P B Jones Astrophys. Space Sci. 33 215 (1975)

    Article  ADS  Google Scholar 

  67. I Easson and C J Pethick Phys. Rev. D 16 275 (1977)

    Article  ADS  Google Scholar 

  68. M Ruderman Annu. Rev. Astron. Astrophys. 10 427 (1972)

    Article  ADS  Google Scholar 

  69. A G V Cameron and V Canuto Proc. 16th Solvay Conf. on Astrophysics and Gravitation: Neutron Stars: General Review (Editions de 1’UniversitC de Bruxelles, Bruxelles, 1973).

  70. M Gleiser Phys. Rev. D 38 02376 (1988)

    Article  ADS  Google Scholar 

  71. P S Letelier Phys. Rev. D 22 807 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  72. D Mihalas and B Mihalas Foundations of Radiation Hydrodynamics (Oxford University Press, Oxford, 1984) p. 467.

    MATH  Google Scholar 

  73. D Kazanas Astrophys. J. 222 L109 (1978)

  74. D Kazanas and D Schramm Sources of Gravitational Radiation, ed. L. Smarr (Cambridge University Press, Cambridge, 1979) p. 345.

  75. L Herrera and N O Santos Phys. Rep. 286 53 (1997)

  76. L Herrera Phys. Rev. D 101 104024 (2020)

  77. P H Chavanis and T Harko Phys. Rev. D 86 064011 (2012)

    Article  ADS  Google Scholar 

  78. R Chan, L Herrera and N O Santos Mon. Not. R. Astron. Soc. 265 533 (1993)

    Article  ADS  Google Scholar 

  79. Ch C Moustakidis Gen. Relativ. Gravit. 49 68 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  80. B K Harrison, M Wakano and J A Wheeler. Gravitational theory and gravitational collapse (University of Chicago Press 1965).

  81. Ya B Zeldovich and I D Novikov Relativistic astrophysics stars and relativity: Vol. 1 ( University of Chicago Press 1971)

  82. J M Lattimer and M Prakash Phys. Rep. 333 121 (2000)

    Article  ADS  Google Scholar 

  83. J B Hartle Astrophys. J. 150 1005 (1967)

    Article  ADS  Google Scholar 

  84. M Bejger and P Haensel Astron. & Astrophys. 396 917 (2002)

    Article  ADS  Google Scholar 

  85. L Herrera Phys. Lett. A 165 206 (1992)

    Article  ADS  Google Scholar 

  86. H Abreu, H Hernandez and L A Nunez Class. Quantum Gravit. 24 4631 (2007)

    Article  ADS  Google Scholar 

  87. S Benic et al. Astron. Astrophys. 4577 A40 (2015)

    Article  Google Scholar 

  88. M L Rawls et al. Aptrophys. J. 730 25 (2011)

    Article  ADS  Google Scholar 

  89. T Gangopadhyay et al. Mon. Not. R. Astron. Soc. 431 3216 (2013)

    Article  ADS  Google Scholar 

  90. L Herrera, J Ospino and A Di Prisco Phys. Rev. D 77 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

FR is thankful to the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, for providing research facility. FR is also grateful to Jadavpur University for financial support under RUSA 2.0 and to DST-SERB (EMR/2016/000193), Government of India. Authors are also grateful to esteemed reviewer(s) for rigorous review and for judicious comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.N., Rahaman, F. & Pant, N. Three-layered relativistic hybrid star with distinct equation of states. Indian J Phys 96, 209–222 (2022). https://doi.org/10.1007/s12648-020-01981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01981-3

Keywords

Navigation