Skip to main content

Advertisement

Log in

Oxidative stress in Alzheimer’s disease: current knowledge of signaling pathways and therapeutics

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease’s pathophysiology is still a conundrum. Growing number of evidences have elucidated the involvement of oxidative stress in the pathology of AD rendering it a major target for therapeutic development. Reactive oxygen species (ROS) generated by altered mitochondrial function, dysregulated electron transport chain and other sources elevate aggregated Aβ and neurofibrillary tangles which further stimulating the production of ROS. Oxidative stress induced damage to lipids, proteins and DNA result in neuronal death which leads to AD. In addition, oxidative stress induces apoptosis that is triggered by the modulation of ERK1/2 and Nrf2 pathway followed by increased GSK-3β expression and decreased PP2A activity. Oxidative stress exaggerates disease condition by interfering with various signaling pathways like RCAN1, CREB/ERK, Nrf2, PP2A, NFκB and PI3K/Akt. Studies have reported the role of TNF-α in oxidative stress stimulation that has been regulated by drugs like etanercept increasing the level of anti-oxidants. Other drugs like pramipexole, memantine, carvedilol, and melatonin have been reported to activate CREB/RCAN1 and Nrf2 pathways. In line with this, epigallocatechin gallate and genistein also target Nrf2 and CREB pathway leading to activation of downstream pathways like ARE and Keap1 which ameliorate oxidative stress condition. Donepezil and resveratrol reduce oxidative stress and activate AMPK pathway along with PP2A activation thus promoting tau dephosphorylation and neuronal survival. This study describes in detail the role of oxidative stress in AD, major signaling pathways involving oxidative stress induced AD and drugs under development targeting these pathways which may aid in therapeutic advances for AD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Fawzi A, Weintraub S, Fawzi W (2020) Retinal imaging in Alzheimer’s disease. In search of the holy grail. Ophthalmology 127:119–121

    Article  PubMed  Google Scholar 

  2. Beura SK, Dhapola R, Panigrahi AR et al (2023) Antiplatelet drugs: potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev. https://doi.org/10.1002/MED.21965

    Article  PubMed  Google Scholar 

  3. Dhapola R, Sarma P, Bikash M et al (2021) Recent advances in molecular pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimer’s disease. Mol Neurobiol. https://doi.org/10.1007/S12035-021-02612-6

    Article  PubMed  Google Scholar 

  4. Dhapola R, Subhendu ·, Hota S et al (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 29:1669–1681. https://doi.org/10.1007/S10787-021-00889-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benek O, Korabecny J, Soukup O (2020) A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci 41:434–445. https://doi.org/10.1016/J.TIPS.2020.04.008

    Article  CAS  PubMed  Google Scholar 

  6. Shi M, Chu F, Zhu F, Zhu J (2022) Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: a focus on Aducanumab and Lecanemab. Front Aging Neurosci 14:870517. https://doi.org/10.3389/fnagi.2022.870517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumari S, Dhapola R, Reddy DH (2023) Apoptosis in Alzheimer’s disease: insight into the signaling pathways and therapeutic avenues. Apoptosis 28:943–957. https://doi.org/10.1007/s10495-023-01848-y

    Article  PubMed  Google Scholar 

  8. Pan B, Li H, Lang D, Xing B (2019) Environmentally persistent free radicals: occurrence, formation mechanisms and implications. Environ Pollut 248:320–331. https://doi.org/10.1016/j.envpol.2019.02.032

    Article  CAS  PubMed  Google Scholar 

  9. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative Stress: a key modulator in neurodegenerative diseases. Molecules 24:1583. https://doi.org/10.3390/MOLECULES24081583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheignon C, Tomas M, Bonnefont-Rousselot D et al (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  11. Flannery PJ, Trushina E (2019) Mitochondrial dysfunction in Alzheimer’s disease and progress in mitochondria-targeted therapeutics. Curr Behav Neurosci Rep 6:88–102

    Article  Google Scholar 

  12. Mecocci P, Boccardi V, Cecchetti R et al (2018) A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. J Alzheimers Dis 62:1319–1335. https://doi.org/10.3233/JAD-170732

    Article  PubMed  PubMed Central  Google Scholar 

  13. Misrani A, Tabassum S, Yang L (2021) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front Aging Neurosci 13:57. https://doi.org/10.3389/FNAGI.2021.617588/BIBTEX

    Article  Google Scholar 

  14. Esmaeili Y, Yarjanli Z, Pakniya F et al (2022) Targeting autophagy, oxidative stress, and ER stress for neurodegenerative disease treatment. J Control Release 345:147–175. https://doi.org/10.1016/j.jconrel.2022.03.001

    Article  CAS  PubMed  Google Scholar 

  15. Teleanu DM, Niculescu AG, Lungu II et al (2022) An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci 23:5938. https://doi.org/10.3390/IJMS23115938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elfawy HA, Das B (2019) Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative Disease: etiologies and therapeutic strategies. Life Sci 218:165–184. https://doi.org/10.1016/j.lfs.2018.12.029

    Article  CAS  PubMed  Google Scholar 

  17. Bhatti JS, Kaur S, Mishra J et al (2023) Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1869:166798. https://doi.org/10.1016/j.bbadis.2023.166798

    Article  CAS  PubMed  Google Scholar 

  18. Martins RN, Villemagne V, Sohrabi HR et al (2018) Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies—gains from AIBL and DIAN Cohort studies. J Alzheimer’s Dis 62:965–992. https://doi.org/10.3233/JAD-171145

    Article  CAS  Google Scholar 

  19. Lloret A, Badia MC, Giraldo E et al (2011) Alzheimer’s amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1. J Alzheimers Dis 27:701. https://doi.org/10.3233/JAD-2011-110890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seo SR, Chung KC (2008) CREB activates proteasomal degradation of DSCR1/RCAN1. FEBS Lett 582:1889–1893. https://doi.org/10.1016/J.FEBSLET.2008.04.059

    Article  CAS  PubMed  Google Scholar 

  21. Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 22:153–169. https://doi.org/10.1515/RNS.2011.018

    Article  CAS  PubMed  Google Scholar 

  22. Villavicencio Tejo F, Quintanilla RA (2021) Contribution of the Nrf2 Pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants. https://doi.org/10.3390/ANTIOX10071069

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huber KL, Fernández JR, Webb C et al (2021) AGSE: a novel grape seed extract enriched for PP2A activating flavonoids that combats oxidative stress and promotes skin health. Molecules 26:6351. https://doi.org/10.3390/MOLECULES26216351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma GN, Gupta G, Sharma P (2018) A comprehensive review of free radicals, antioxidants, and their relationship with human ailments. Crit Rev Eukaryot Gene Expr 28:139–154. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018022258

    Article  PubMed  Google Scholar 

  25. Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C (2019) Free radicals in Alzheimer’s disease: lipid peroxidation biomarkers. Clin Chim Acta 491:85–90. https://doi.org/10.1016/j.cca.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  26. Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473:805–825. https://doi.org/10.1042/BJ20151227

    Article  CAS  PubMed  Google Scholar 

  27. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various Diseases. Indian J Clin Biochem 30:11–26

    Article  CAS  PubMed  Google Scholar 

  28. Harikrishnareddy D, Misra S, Upadhyay S et al (2015) Roots to start research in amyotrophic lateral sclerosis: molecular pathways and novel therapeutics for future. Rev Neurosci 26:161–181. https://doi.org/10.1515/REVNEURO-2014-0057

    Article  CAS  PubMed  Google Scholar 

  29. Cassidy L, Fernandez F, Johnson JB et al (2020) Oxidative stress in alzheimer’s disease: a review on emergent natural polyphenolic therapeutics. Complement Ther Med 49:102294. https://doi.org/10.1016/j.ctim.2019.102294

    Article  PubMed  Google Scholar 

  30. Uddin MS, Kabir MT (2019) Oxidative stress in Alzheimer’s disease: molecular hallmarks of underlying vulnerability. Springer, Singapore

    Google Scholar 

  31. Chatterjee S (2016) Oxidative stress, inflammation, and disease. Academic Press, Cambridge

    Book  Google Scholar 

  32. Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4:519–522. https://doi.org/10.3892/BR.2016.630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahmad W, Ijaz B, Shabbiri K et al (2017) Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 2017 241:1–10. https://doi.org/10.1186/S12929-017-0379-Z

    Article  Google Scholar 

  34. Beura SK, Dhapola R, Panigrahi AR et al (2022) Redefining oxidative stress in Alzheimer’s disease: targeting platelet reactive oxygen species for novel therapeutic options. Life Sci 306:120855. https://doi.org/10.1016/J.LFS.2022.120855

    Article  CAS  PubMed  Google Scholar 

  35. Liguori I, Russo G, Curcio F et al (2018) Oxidative stress, aging, and Diseases. Clin Interv Aging 13:757–772. https://doi.org/10.2147/CIA.S158513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui W, Wang S, Wang Z et al (2017) Inhibition of PTEN attenuates endoplasmic reticulum stress and apoptosis via activation of PI3K/AKT pathway in Alzheimer’s disease. Neurochem Res 42:3052–3060. https://doi.org/10.1007/s11064-017-2338-1

    Article  CAS  PubMed  Google Scholar 

  37. Moniruzzaman M, Ghosal I, Das D, Chakraborty SB (2018) Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/ NFkB pathway. Biol Res 51:17. https://doi.org/10.1186/s40659-018-0168-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oguntibeju OO (2019) Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 11:45–63

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Akhter F, Chen D, Akhter A et al (2021) Age-dependent accumulation of dicarbonyls and advanced glycation endproducts (AGEs) associates with mitochondrial stress. Free Radic Biol Med 164:429–438. https://doi.org/10.1016/J.FREERADBIOMED.2020.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pazdro R, Burgess JR (2012) Differential effects of α-tocopherol and N-acetyl-cysteine on advanced glycation end product-induced oxidative damage and neurite degeneration in SH-SY5Y cells. Biochim Biophys Acta Mol Basis Dis 1822:550–556. https://doi.org/10.1016/J.BBADIS.2012.01.003

    Article  CAS  Google Scholar 

  41. Reddy VP, Zhu X, Perry G, Smith MA (2009) Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis 16:763. https://doi.org/10.3233/JAD-2009-1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wojtunik-Kulesza KA, Oniszczuk A, Oniszczuk T, Waksmundzka-Hajnos M (2016) The influence of common free radicals and antioxidants on development of Alzheimer’s disease. Biomed Pharmacother 78:39–49. https://doi.org/10.1016/j.biopha.2015.12.024

    Article  CAS  PubMed  Google Scholar 

  43. Guan L, Mao Z, Yang S et al (2022) Dioscin alleviates Alzheimer’s disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 152:113248. https://doi.org/10.1016/j.biopha.2022.113248

    Article  CAS  PubMed  Google Scholar 

  44. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20:148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82. https://doi.org/10.1080/01616412.2016.1251711

    Article  CAS  PubMed  Google Scholar 

  46. Alavi Naini SM, Soussi-Yanicostas N (2015) Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid Med Cell Longev 2015:151979. https://doi.org/10.1155/2015/151979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Z, Li T, Li P et al (2015) The ambiguous relationship of oxidative stress, Tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid Med Cell Longev 2015:352723. https://doi.org/10.1155/2015/352723

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rehman MU, Sehar N, Dar NJ et al (2023) Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: an update on current advances and impediments. Neurosci Biobehav Rev 144:104961. https://doi.org/10.1016/J.NEUBIOREV.2022.104961

    Article  CAS  PubMed  Google Scholar 

  49. Du F, Yu Q, Kanaan NM, Du Yan SS (2022) Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer’s disease. Hum Mol Genet 31:2498–2507. https://doi.org/10.1093/HMG/DDAB363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dewanjee S, Chakraborty P, Bhattacharya H et al (2022) Altered glucose metabolism in Alzheimer’s disease: role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 193:134–157. https://doi.org/10.1016/J.FREERADBIOMED.2022.09.032

    Article  CAS  PubMed  Google Scholar 

  51. Kim HJ, Khalimonchuk O, Smith PM, Winge DR (2012) Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim Biophys Acta 1823:1604–1616. https://doi.org/10.1016/j.bbamcr.2012.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jurcău MC, Andronie-Cioara FL, Jurcău A et al (2022) The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: therapeutic implications and future perspectives. Antioxidants 11:2167. https://doi.org/10.3390/ANTIOX11112167

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shabbir U, Tyagi A, Elahi F et al (2021) The potential role of polyphenols in oxidative stress and inflammation Induced by gut microbiota in Alzheimer’s disease. Antioxid (Basel Switzerland). https://doi.org/10.3390/antiox10091370

    Article  Google Scholar 

  54. Shandilya S, Kumar S, Kumar Jha N et al (2022) Interplay of gut microbiota and oxidative stress: perspective on neurodegeneration and neuroprotection. J Adv Res 38:223–244. https://doi.org/10.1016/j.jare.2021.09.005

    Article  CAS  PubMed  Google Scholar 

  55. Mossad O, Batut B, Yilmaz B et al (2022) Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N(6)-carboxymethyllysine. Nat Neurosci 25:295–305. https://doi.org/10.1038/s41593-022-01027-3

    Article  CAS  PubMed  Google Scholar 

  56. Hoeffer CA, Dey A, Sachan N et al (2007) Neurobiology of disease the down syndrome critical region protein RCAN1 regulates long-term potentiation and memory via inhibition of phosphatase signaling. J Neuroci. https://doi.org/10.1523/JNEUROSCI.3974-07.2007

    Article  Google Scholar 

  57. Iizuka M, Abe M, Shiiba K et al (2004) Down syndrome candidate region 1,a downstream target of VEGF, participa tes in endothelial cell migration and angiogenesis. J Vasc Res 41:334–344. https://doi.org/10.1159/000079832

    Article  CAS  PubMed  Google Scholar 

  58. Silveira HCS, Sommer CA, Soares-Costa A, Henrique-Silva F (2004) A calcineurin inhibitory protein overexpressed in Down’s syndrome interacts with the product of a ubiquitously expressed transcript. Braz J Med Biol Res 37:785–789. https://doi.org/10.1590/S0100-879X2004000600002

    Article  CAS  PubMed  Google Scholar 

  59. Lee JW, Kang HS, Lee JY et al (2012) The transcription factor STAT2 enhances proteasomal degradation of RCAN1 through the ubiquitin E3 ligase FBW7. Biochem Biophys Res Commun 420:404–410. https://doi.org/10.1016/J.BBRC.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  60. Liu C, Zheng L, Wang H et al (2015) The RCAN1 inhibits NF-κB and suppresses lymphoma growth in mice. Cell Death Dis 6(10):e1929. https://doi.org/10.1038/cddis.2015.260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu Q, Wu Y (2018) RCAN1 in the inverse association between Alzheimer’s disease and cancer. Oncotarget 9:54. https://doi.org/10.18632/ONCOTARGET.23094

    Article  PubMed  Google Scholar 

  62. Wu Y, Song W (2013) Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J 27:208–221. https://doi.org/10.1096/FJ.12-213124

    Article  CAS  PubMed  Google Scholar 

  63. Delikkaya B, Moriel N, Tong M et al (2019) Altered expression of insulin-degrading enzyme and regulator of calcineurin in the rat intracerebral streptozotocin model and human apolipoprotein E-ε4–associated Alzheimer’s disease. Alzheimer’s Dement Diag Assess Dis Monit 11:392–404. https://doi.org/10.1016/J.DADM.2019.03.004

    Article  Google Scholar 

  64. Rehman SU, Ikram M, Ullah N et al (2019) Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells 8:760. https://doi.org/10.3390/CELLS8070760

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fu X, Feng Y, Shao B, Zhang Y (2019) Activation of the ERK/Creb/Bcl–2 pathway protects periodontal ligament stem cells against hydrogen peroxide-induced oxidative stress. Mol Med Rep 49:3649–3657. https://doi.org/10.3892/MMR.2019.10027/HTML

    Article  Google Scholar 

  66. Zhang B, Zhao J, Wang Z et al (2020) DL0410 attenuates oxidative stress and neuroinflammation via BDNF/TrkB/ERK/CREB and Nrf2/HO-1 activation. Int Immunopharmacol 86:106729. https://doi.org/10.1016/J.INTIMP.2020.106729

    Article  CAS  PubMed  Google Scholar 

  67. Dai C, Ciccotosto GD, Cappai R et al (2018) Rapamycin confers neuroprotection against colistin-induced oxidative stress, mitochondria dysfunction, and apoptosis through the activation of autophagy and mTOR/Akt/CREB signaling pathways. ACS Chem Neurosci 9:824–837. https://doi.org/10.1021/ACSCHEMNEURO.7B00323

    Article  CAS  PubMed  Google Scholar 

  68. Chan K, Han XD, Kan YW (2001) An important function of Nrf2 in combating oxidative stress:detoxification of acetaminophen. Proc Natl Acad Sci USA 98:4611. https://doi.org/10.1073/PNAS.081082098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Prasad KN (2016) Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer’s disease. Mech Ageing Dev 153:41–47. https://doi.org/10.1016/J.MAD.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  70. Loboda A, Damulewicz M, Pyza E et al (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73:3221–3247. https://doi.org/10.1007/S00018-016-2223-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Salazar M, Rojo A, Velasco D et al (2006) Glycogen synthase kinase-3β inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor. ASBMB 281:14841–14851

    CAS  Google Scholar 

  72. Rada P, Rojo AI, Chowdhry S et al (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ali T, Kim T, Rehman SU et al (2018) Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol 55:6076–6093. https://doi.org/10.1007/s12035-017-0798-6

    Article  CAS  PubMed  Google Scholar 

  74. Kanninen K, White AR, Koistinaho J, Malm T (2011) Targeting glycogen synthase kinase-3β for therapeutic benefit against oxidative stress in Alzheimer’s disease: involvement of the Nrf2-ARE pathway. Int J Alzheimers Dis 2011:985085. https://doi.org/10.4061/2011/985085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu C, Xiao JH (2021) The Keap1-Nrf2 system: a mediator between oxidative stress and aging. Oxid Med Cell Longev 2021:6635460. https://doi.org/10.1155/2021/6635460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bononi A, Agnoletto C, De Marchi E et al (2011) Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011:1. https://doi.org/10.4061/2011/329098

    Article  CAS  Google Scholar 

  77. Elgenaidi IS, Spiers JP (2019) Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: a potential therapeutic target? Pharmacol Ther 198:68–89. https://doi.org/10.1016/J.PHARMTHERA.2019.02.011

    Article  CAS  PubMed  Google Scholar 

  78. Kamat PK, Rai S, Nath C (2013) Okadaic acid induced neurotoxicity: an emerging tool to study Alzheimer’s disease pathology. Neurotoxicology 37:163–172. https://doi.org/10.1016/j.neuro.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  79. Abeysinghe AADT, Deshapriya RDUS, Udawatte C (2020) Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci. https://doi.org/10.1016/j.lfs.2020.117996

    Article  PubMed  Google Scholar 

  80. Joe E, Ringman JM (2019) Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ 367:I6217

    Article  Google Scholar 

  81. Söderberg L, Johannesson M, Nygren P et al (2023) Lecanemab, aducanumab, and gantenerumab - binding profiles to different forms of amyloid-beta might explain efficacy and Side effects in clinical trials for Alzheimer’s disease. Neurother J Am Soc Exp Neurother 20:195–206. https://doi.org/10.1007/s13311-022-01308-6

    Article  CAS  Google Scholar 

  82. Zhang Y-H, Wang D-W, Xu S-F et al (2018) α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S tau transgenic mice. Redox Biol 14:535–548. https://doi.org/10.1016/j.redox.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  83. Bucciantini M, Leri M, Nardiello P et al (2021) Olive polyphenols: antioxidant and anti-inflammatory properties. Antioxidants (Basel, Switzerland). https://doi.org/10.3390/antiox10071044

    Article  PubMed  Google Scholar 

  84. Doğanoğlu A, Erbas O (2021) Effects of green tea polyphenols and oxidative stress on Alzheimer’s and Parkinson’s diseases. J Exp Basic Med Sci 2:2. https://doi.org/10.5606/JEBMS.2021.75632

    Article  Google Scholar 

  85. Kim Y, Cho AY, Kim HC et al (2022) Effects of natural polyphenols on oxidative stress-mediated blood-brain barrier dysfunction. antioxidants. https://doi.org/10.3390/antiox11020197

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhou X, Li Y, Shi X, Ma C (2016) An overview on therapeutics attenuating amyloid β level in Alzheimer’s disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. Am J Transl Res 8:246–269

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ekert JO, Gould RL, Reynolds G, Howard RJ (2018) TNF alpha inhibitors in Alzheimer’s disease: a systematic review. Int J Geriatr Psychiatry 33:688–694. https://doi.org/10.1002/GPS.4871

    Article  PubMed  Google Scholar 

  88. Kisby B, Jarrell J, Agar M et al (2019) Alzheimer’s disease and its potential alternative therapeutics. J Alzheimer’s Dis Parkinsonism. https://doi.org/10.4172/2161-0460.1000477

    Article  Google Scholar 

  89. Ouyang Y, Chen Z, Tan M et al (2013) Carvedilol, a third-generation β-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells. Biochem Biophys Res Commun 441:917–922. https://doi.org/10.1016/j.bbrc.2013.10.160

    Article  CAS  PubMed  Google Scholar 

  90. Cui X, Guo Y-E, Fang J-H et al (2019) Donepezil, a drug for Alzheimer’s disease, promotes oligodendrocyte generation and remyelination. Acta Pharmacol Sin 40:1386–1393. https://doi.org/10.1038/s41401-018-0206-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kumar A, Gupta V, Sharma S (2023) Donepezil. Treasure Island (FL): StatPearls Publishing. PMID: 30020629

  92. Atef MM, El-Sayed NM, Ahmed AAM, Mostafa YM (2019) Donepezil improves neuropathy through activation of AMPK signalling pathway in streptozotocin-induced diabetic mice. Biochem Pharmacol 159:1–10. https://doi.org/10.1016/j.bcp.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  93. Khalaf SS, Hafez MM, Mehanna ET et al (2019) Combined vildagliptin and memantine treatment downregulates expression of amyloid precursor protein, and total and phosphorylated tau in a rat model of combined Alzheimer’s disease and type 2 diabetes. Naunyn Schmiedebergs Arch Pharmacol 392:685–695. https://doi.org/10.1007/s00210-019-01616-3

    Article  CAS  PubMed  Google Scholar 

  94. Hao Y, Xiong R, Gong X (2021) Memantine, NMDA receptor antagonist, attenuates ox-LDL-Induced inflammation and oxidative stress via activation of BDNF/TrkB signaling pathway in HUVECs. Inflammation 44:659–670. https://doi.org/10.1007/s10753-020-01365-z

    Article  CAS  PubMed  Google Scholar 

  95. Rosini M, Simoni E, Caporaso R et al (2019) Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s Disease. Eur J Med Chem 180:111–120. https://doi.org/10.1016/j.ejmech.2019.07.011

    Article  CAS  PubMed  Google Scholar 

  96. Shukla M, Govitrapong P, Boontem P et al (2017) Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr Neuropharmacol 15:1010–1031. https://doi.org/10.2174/1570159X15666170313123454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun TC, Liu XC, Yang SH et al (2020) Melatonin inhibits oxidative stress and apoptosis in cryopreserved ovarian tissues via Nrf2/HO-1 signaling pathway. Front Mol Biosci 7:163. https://doi.org/10.3389/fmolb.2020.00163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Merlo S, Spampinato SF, Sortino MA (2019) Early compensatory responses against neuronal injury: a new therapeutic window of opportunity for Alzheimer’s disease? CNS Neurosci Ther 25:5–13. https://doi.org/10.1111/cns.13050

    Article  CAS  PubMed  Google Scholar 

  99. Perez Ortiz JM, Swerdlow RH (2019) Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 176:3489–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Salman M, Akram M, Shahrukh M et al (2022) Effects of pramipexole on beta-amyloid1–42 memory deficits and evaluation of oxidative stress and mitochondrial function markers in the hippocampus of Wistar rat. Neurotoxicology 92:91–101. https://doi.org/10.1016/J.NEURO.2022.07.006

    Article  CAS  PubMed  Google Scholar 

  101. Wang J, Jia Y, Li G et al (2018) The dopamine receptor D3 regulates lipopolysaccharide-induced depressive-like behavior in mice. Int J Neuropsychopharmacol 21:448–460. https://doi.org/10.1093/IJNP/PYY005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen J-Y, Zhu Q, Zhang S et al (2019) Resveratrol in experimental Alzheimer’s disease models: a systematic review of preclinical studies. Pharmacol Res 150:104476. https://doi.org/10.1016/j.phrs.2019.104476

    Article  CAS  PubMed  Google Scholar 

  103. Wang N, He J, Pan C et al (2019) Resveratrol activates autophagy via the AKT/mTOR signaling pathway to improve cognitive dysfunction in rats with chronic cerebral hypoperfusion. Front Neurosci 13:859. https://doi.org/10.3389/fnins.2019.00859

    Article  PubMed  PubMed Central  Google Scholar 

  104. Schweiger S, Matthes F, Posey K et al (2017) Resveratrol induces dephosphorylation of tau by interfering with the MID1-PP2A complex. Sci Rep 7:13753. https://doi.org/10.1038/s41598-017-12974-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Detrait ER, Danis B, Lamberty Y, Foerch P (2014) Peripheral administration of an anti-TNF-α receptor fusion protein counteracts the amyloid induced elevation of hippocampal TNF-α levels and memory deficits in mice. Neurochem Int 72:10–13. https://doi.org/10.1016/j.neuint.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  106. Lee I-T, Luo S-F, Lee C-W et al (2009) Overexpression of HO-1 protects against TNF-alpha-mediated airway inflammation by down-regulation of TNFR1-dependent oxidative stress. Am J Pathol 175:519–532. https://doi.org/10.2353/ajpath.2009.090016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ortí-Casañ N, Wu Y, Naudé PJW et al (2019) Targeting TNFR2 as a novel therapeutic strategy for alzheimer’s disease. Front Neurosci 13:49. https://doi.org/10.3389/FNINS.2019.00049

    Article  PubMed  PubMed Central  Google Scholar 

  108. Thakur S, Dhapola R, Sarma P et al (2022) Neuroinflammation in Alzheimer’s disease: current progress in molecular signaling and therapeutics. Inflammation. https://doi.org/10.1007/S10753-022-01721-1/TABLES/1

    Article  PubMed  Google Scholar 

  109. Yang M, Chen J, Zhao J, Meng M (2014) Etanercept attenuates myocardial ischemia/reperfusion injury by decreasing inflammation and oxidative stress. PLoS One 9:e108024. https://doi.org/10.1371/journal.pone.0108024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Khalatbary AR, Khademi E (2020) The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci 23:281–294

    Article  CAS  PubMed  Google Scholar 

  111. Han J, Wang M, Jing X et al (2014) (-)-Epigallocatechin gallate protects against cerebral ischemia-induced oxidative stress via Nrf2/ARE signaling. Neurochem Res 39:1292–1299. https://doi.org/10.1007/s11064-014-1311-5

    Article  CAS  PubMed  Google Scholar 

  112. Pierzynowska K, Podlacha M, Gaffke L et al (2019) Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer’s disease. Neuropharmacology 148:332–346. https://doi.org/10.1016/j.neuropharm.2019.01.030

    Article  CAS  PubMed  Google Scholar 

  113. Devi KP, Shanmuganathan B, Manayi A et al (2017) Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol Neurobiol 54:7028–7041. https://doi.org/10.1007/s12035-016-0215-6

    Article  CAS  PubMed  Google Scholar 

  114. Guo J, Yang G, He Y et al (2021) Involvement of α7nAChR in the Protective effects of genistein against β-amyloid-induced oxidative stress in neurons via a PI3K/Akt/Nrf2 pathway-related mechanism. Cell Mol Neurobiol 41:377–393. https://doi.org/10.1007/s10571-020-01009-8

    Article  CAS  PubMed  Google Scholar 

  115. Jiang T, Wang XQ, Ding C, Du XL (2017) Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. Korean J Physiol Pharmacol 21:579–589. https://doi.org/10.4196/KJPP.2017.21.6.579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA (2017) Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 133:88–96. https://doi.org/10.1016/J.BRAINRESBULL.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  117. Bai R, Guo J, Ye XY et al (2022) Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev 77:101619. https://doi.org/10.1016/J.ARR.2022.101619

    Article  CAS  PubMed  Google Scholar 

  118. Ionescu-Tucker A, Cotman CW (2021) Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 107:86–95. https://doi.org/10.1016/J.NEUROBIOLAGING.2021.07.014

    Article  CAS  PubMed  Google Scholar 

  119. Bhatia V, Sharma S (2021) Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J Neurol Sci 421:117253. https://doi.org/10.1016/J.JNS.2020.117253

    Article  CAS  PubMed  Google Scholar 

  120. Perluigi M, Di Domenico F, Barone E, Butterfield DA (2021) mTOR in Alzheimer disease and its earlier stages: links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 169:382–396. https://doi.org/10.1016/J.FREERADBIOMED.2021.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sango J, Kakihana T, Takahashi M et al (2022) USP10 inhibits the dopamine-induced reactive oxygen species-dependent apoptosis of neuronal cells by stimulating the antioxidant Nrf2 activity. J Biol Chem 298:101448. https://doi.org/10.1016/j.jbc.2021.101448

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

D.H.K.R is highly thankful to the UGC-BSR (NO.F.30–583/2021(BSR) and Central University of Punjab, Bathinda- Research Seed Money (CUPB/CC/PF/20/226) for providing research support. R.D is recipients of research fellowship from the Department of Science and Technology DST-INSPIRE (Reg. No. IF210098), P.S is recipients of Non-NET fellowship (Ref.No. CUPB/Acad.-54/2022-23/Notification/2472) from Central University of Punjab.

Author information

Authors and Affiliations

Authors

Contributions

DHKR and SKS designed the manuscript. RD wrote the manuscript and prepared the illustrated figures, SKB and PS wrote the manuscript and prepared tables. DHKR. and SKS revised the manuscript for important intellectual content. All authors read and approved the final manuscript. All persons designated as authors qualify for author-ship, and all those who qualify for authorship are listed.

Corresponding authors

Correspondence to Sunil K. Singh or Dibbanti HariKrishnaReddy.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhapola, R., Beura, S.K., Sharma, P. et al. Oxidative stress in Alzheimer’s disease: current knowledge of signaling pathways and therapeutics. Mol Biol Rep 51, 48 (2024). https://doi.org/10.1007/s11033-023-09021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09021-z

Keywords

Navigation