Skip to main content

Advertisement

Log in

Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Alzheimer disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia in the elderly. A combination of cholinergic and glutamatergic dysfunction appears to underlie the symptomatology of AD, and thus, treatment strategies should address impairments in both systems. Evidence suggests the involvement of phospholipase A2 (PLA2) enzyme in memory impairment and neurodegeneration in AD via actions on both cholinergic and glutamatergic systems.

Objectives

To review cholinergic and glutamatergic alterations underlying cognitive impairment and neuropathology in AD and attempt to link PLA2 with such alterations.

Methods

Medline databases were searched (no date restrictions) for published articles with links among the terms Alzheimer disease (mild, moderate, severe), mild cognitive impairment, choline acetyltransferase, acetylcholinesterase, NGF, NGF receptor, muscarinic receptor, nicotinic receptor, NMDA, AMPA, metabotropic glutamate receptor, atrophy, glucose metabolism, phospholipid metabolism, sphingolipid, membrane fluidity, phospholipase A2, arachidonic acid, attention, memory, long-term potentiation, β-amyloid, tau, inflammation, and reactive species. Reference lists of the identified articles were checked to identify additional studies of interest.

Results

Overall, results suggest the hypothesis that persistent inhibition of cPLA2 and iPLA2 isoforms at early stages of AD may play a central role in memory deficits and β-amyloid production through down-regulation of cholinergic and glutamate receptors. As the disease progresses, β-amyloid induced up-regulation of cPLA2 and sPLA2 isoforms may play critical roles in inflammation and oxidative stress, thus participating in the neurodegenerative process.

Conclusion

Activation and inhibition of specific PLA2 isoforms at different stages of AD could be of therapeutic importance and delay cognitive dysfunction and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamec E, Mercken M, Beermann ML, Didier M, Nixon RA (1997) Acute rise in the concentration of free cytoplasmic calcium leads to dephosphorylation of the microtubule-associated protein tau. Brain Res 757:93–101

    Article  PubMed  CAS  Google Scholar 

  • Albasanz JL, Dalfo E, Ferrer I, Martin M (2005) Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis 20:685–693

    Article  PubMed  CAS  Google Scholar 

  • Alberch J, Carman-Krzan M, Fabrazzo M, Wise BC (1991) Chronic treatment with scopolamine and physostigmine changes nerve growth factor (NGF) receptor density and NGF content in rat brain. Brain Res 542:233–240

    Article  PubMed  CAS  Google Scholar 

  • Allen SJ, MacGowan SH, Treanor JJ, Feeney R, Wilcock GK, Dawbarn D (1991) Normal b-NGF content in Alzheimer’s disease cerebral cortex and hippocampus. Neurosci Lett 131:135–139

    Article  PubMed  CAS  Google Scholar 

  • Almeida T, Cunha RA, Ribeiro JA (1999) Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Res 826:104–111

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  CAS  Google Scholar 

  • Amaral D, Witter M (1995) Hippocampal formation. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 443–492

    Google Scholar 

  • Araujo DM, Lapchak PA, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50:1914–1923

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bruckner MK, Bigl V, Marcova L (1995) Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer’s disease. II. Ageing, Korsakoff’s disease, Parkinson’s disease, and Alzheimer’s disease. J Comp Neurol 351:189–222

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Ikonomovic MD, Sheffield R, Wenthold RJ (1994) AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease. Brain Res 639:207–216

    Article  PubMed  CAS  Google Scholar 

  • Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, Causing CG, Miller FD (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140:911–923

    Article  PubMed  CAS  Google Scholar 

  • Banerjee C, Nyengaard JR, Wevers A, de Vos RA, Jansen Steur EN, Lindstrom J, Pilz K, Nowacki S, Bloch W, Schroder H (2000) Cellular expression of a7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer’s and Parkinson’s disease—a stereological approach. Neurobiol Dis 7:666–672

    Article  PubMed  CAS  Google Scholar 

  • Barbour B, Szatkowski M, Ingledew N, Attwell D (1989) Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342:918–920

    Article  PubMed  CAS  Google Scholar 

  • Barker PA, Shooter EM (1994) Disruption of NGF binding to the low affinity neurotrophin receptor p75LNTR reduces NGF binding to TrkA on PC12 cells. Neuron 13:203–215

    Article  PubMed  CAS  Google Scholar 

  • Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14:298–309

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  PubMed  CAS  Google Scholar 

  • Bate C, Kempster S, Last V, Williams A (2006) Interferon-γ increases neuronal death in response to amyloid-β1–42. J Neuroinflammation 3:7

    Article  PubMed  CAS  Google Scholar 

  • Baudry M, Massicotte G, Hauge S (1991) Opposite effects of phospholipase A2 on [3H]AMPA binding in adult and neonatal membranes. Brain Res Dev Brain Res 61:265–267

    Article  PubMed  CAS  Google Scholar 

  • Bernard J, Lahsaini A, Baudry M, Massicotte G (1993) The phospholipase A2 inhibitor bromophenacyl bromide prevents the depolarization-induced increase in [3H]AMPA binding in rat brain synaptoneurosomes. Brain Res 628:340–344

    Article  PubMed  CAS  Google Scholar 

  • Bernard J, Lahsaini A, Massicotte G (1994) Potassium-induced long-term potentiation in area CA1 of the hippocampus involves phospholipase activation. Hippocampus 4:447–453

    Article  PubMed  CAS  Google Scholar 

  • Bernard J, Chabot C, Gagne J, Baudry M, Massicotte G (1995) Melittin increases AMPA receptor affinity in rat brain synaptoneurosomes. Brain Res 671:195–200

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Carmifnoto G, Pasti L, Vesce S, Rossi D, Lodi Rizzini B, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    Article  PubMed  CAS  Google Scholar 

  • Bi H, Sze CI (2002) N-methyl-d-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer’s disease. J Neurol Sci 200:11–18

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Block W, Jessen F, Traber F, Flacke S, Manka C, Lamerichs R, Keller E, Heun R, Schild H (2002) Regional N-acetylaspartate reduction in the hippocampus detected with fast proton magnetic resonance spectroscopic imaging in patients with Alzheimer disease. Arch Neurol 59:828–834

    Article  PubMed  Google Scholar 

  • Blusztajn JK, Holbrook PG, Lakher M, Liscovitch M, Maire JC, Mauron C, Richardson UI, Tacconi M, Wurtman RJ (1986) “Autocannibalism” of membrane choline-phospholipids: physiology and pathology. Psychopharmacol Bull 22:781–786

    PubMed  CAS  Google Scholar 

  • Blusztajn JK, Liscovitch M, Mauron C, Richardson UI, Wurtman RJ (1987a) Phosphatidylcholine as a precursor of choline for acetylcholine synthesis. J Neural Transm 24:247–259

    CAS  Google Scholar 

  • Blusztajn JK, Liscovitch M, Richardson UI (1987b) Synthesis of acetylcholine from choline derived from phosphatidylcholine in a human neuronal cell line. Proc Natl Acad Sci USA 84:5474–5477

    Article  PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM (1997a) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Shannon HE, Satterwhite J, Lucas R, van Lier R, Paul SM (1997b) The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 11:S16–S22

    PubMed  CAS  Google Scholar 

  • Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti B, Davis JG, Constantine G, Mathis CA, Moore RY, DeKosky ST (2005) Cognitive correlates of alterations in acetylcholinesterase in Alzheimer’s disease. Neurosci Lett 380:127–132

    Article  PubMed  CAS  Google Scholar 

  • Boundy KL, Barnden LR, Katsifis AG, Rowe CC (2005) Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer’s disease. J Clin Neurosci 12:421–425

    Article  PubMed  CAS  Google Scholar 

  • Brosche T, Platt D (1998) The biological significance of plasmalogens in defense against oxidative damage. Exp Gerontol 33:363–369

    Article  PubMed  CAS  Google Scholar 

  • Brown GG, Levine SR, Gorell JM, Pettegrew JW, Gdowski JW, Bueri JA, Helpern JA, Welch KM (1989) In vivo 31P NMR profiles of Alzheimer’s disease and multiple subcortical infarct dementia. Neurology 39:1423–1427

    PubMed  CAS  Google Scholar 

  • Burghaus L, Schutz U, Krempel U, de Vos RA, Jansen Steur EN, Wevers A, Lindstrom J, Schroder H (2000) Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res 76:385–388

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548–554

    Article  PubMed  CAS  Google Scholar 

  • Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, LaFerla FM (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49:671–682

    Article  PubMed  CAS  Google Scholar 

  • Cacquevel M, Lebeurrier N, Cheenne S, Vivien D (2004) Cytokines in neuroinflammation and Alzheimer’s disease. Curr Drug Targets 5:529–534

    Article  PubMed  CAS  Google Scholar 

  • Callen DJ, Black SE, Gao F, Caldwell CB, Szalai JP (2001) Beyond the hippocampus: MRI volumetry confirms widespread limbic atrophy in AD. Neurology 57:1669–1674

    PubMed  CAS  Google Scholar 

  • Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289

    Article  PubMed  CAS  Google Scholar 

  • Caporaso GL, Gandy SE, Buxbaum JD, Ramabhadran TV, Greengard P (1992) Protein phosphorylation regulates secretion of Alzheimer β/A4 amyloid precursor protein. Proc Natl Acad Sci USA 89:3055–3059

    Article  PubMed  CAS  Google Scholar 

  • Carter TL, Rissman RA, Mishizen-Eberz AJ, Wolfe BB, Hamilton RL, Gandy S, Armstrong DM (2004) Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer’s disease patients according to Braak stage. Exp Neurol 187:299–309

    Article  PubMed  CAS  Google Scholar 

  • Catania MV, Hollingsworth Z, Penney JB, Young AB (1993) Phospholipase A2 modulates different subtypes of excitatory amino acid receptors: autoradiographic evidence. J Neurochem 60:236–245

    Article  PubMed  CAS  Google Scholar 

  • Chabot C, Gagne J, Giguere C, Bernard J, Baudry M, Massicotte G (1998) Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8:299–309

    Article  PubMed  CAS  Google Scholar 

  • Chakraborti S (2003) Phospholipase A2 isoforms: a perspective. Cell Signal 15:637–665

    Article  PubMed  CAS  Google Scholar 

  • Chantal S, Labelle M, Bouchard RW, Braun CM, Boulanger Y (2002) Correlation of regional proton magnetic resonance spectroscopic metabolic changes with cognitive deficits in mild Alzheimer disease. Arch Neurol 59:955–962

    Article  PubMed  Google Scholar 

  • Chen J, Engle SJ, Seilhamer JJ, Tischfield JA (1994) Cloning and recombinant expression of a novel human low molecular weight Ca2+-dependent phospholipase A2. J Biol Chem 269:2365–2368

    PubMed  CAS  Google Scholar 

  • Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC (2002) Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 13:1939–1943

    Article  PubMed  Google Scholar 

  • Chetelat G, Desgranges B, de la Sayette V, Viader F, Berkouk K, Landeau B, Lalevee C, Le Doze F, Dupuy B, Hannequin D, Baron JC, Eustache F (2003) Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain 126:1955–1967

    Article  PubMed  Google Scholar 

  • Cho HW, Kim JH, Choi S, Kim HJ (2006) Phospholipase A2 is involved in muscarinic receptor-mediated sAPPa release independently of cyclooxygenase or lypoxygenase activity in SH-SY5Y cells. Neurosci Lett 397:214–218

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen GR, Christensen LH, Harrington NR, Macphail EM, Riedel G (1999) Task-specific enhancement of short-term, but not long-term, memory by class I metabotropic glutamate receptor antagonist 1-aminoindan-1,5-dicarboxylic acid in rats. Behav Brain Res 101:215–226

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Cochran EJ, Bennett DA, Mufson EJ, Kordower JH (2001) Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol 437:296–307

    Article  PubMed  CAS  Google Scholar 

  • Clarke MS, Prendergast MA, Terry AV Jr (1999) Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats. Learn Mem 6:634–649

    Article  PubMed  CAS  Google Scholar 

  • Claus JJ, Dubois EA, Booij J, Habraken J, de Munck JC, van Herk M, Verbeeten B Jr, van Royen EA (1997) Demonstration of a reduction in muscarinic receptor binding in early Alzheimer’s disease using iodine-123 dexetimide single-photon emission tomography. Eur J Nucl Med 24:602–608

    PubMed  CAS  Google Scholar 

  • Clements MP, Rose SP (1996) Time-dependent increase in release of arachidonic acid following passive avoidance training in the day-old chick. J Neurochem 67:1317–1323

    PubMed  CAS  Google Scholar 

  • Clements MP, Bliss TV, Lynch MA (1991) Increase in arachidonic acid concentration in a postsynaptic membrane fraction following the induction of long-term potentiation in the dentate gyrus. Neuroscience 45:379–389

    Article  PubMed  CAS  Google Scholar 

  • Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70:462–473

    Article  PubMed  CAS  Google Scholar 

  • Collins DR, Smith RC, Davies SN (1995) Interactions between arachidonic acid and metabotropic glutamate receptors in the induction of synaptic potentiation in the rat hippocampal slice. Eur J Pharmacol 294:147–154

    Article  PubMed  CAS  Google Scholar 

  • Costantini C, Weindruch R, Della Valle G, Puglielli L (2005) A TrkA-to-p75NTR molecular switch activates amyloid β-peptide generation during aging. Biochem J 391:59–67

    Article  PubMed  CAS  Google Scholar 

  • Counts SE, Nadeem M, Wuu J, Ginsberg SD, Saragovi HU, Mufson EJ (2004) Reduction of cortical TrkA but not p75NTR protein in early-stage Alzheimer’s disease. Ann Neurol 56:520–531

    Article  PubMed  CAS  Google Scholar 

  • Couratier P, Sindou P, Tabaraud F, Diop AG, Spencer PS, Hugon J (1995) Modulation of tau neuronal expression induced by NMDA, non-NMDA and metabotropic glutamate receptor agonists. Neurodegeneration 4:33–41

    Article  PubMed  CAS  Google Scholar 

  • Couratier P, Lesort M, Sindou P, Esclaire F, Yardin C, Hugon J (1996) Modifications of neuronal phosphorylated tau immunoreactivity induced by NMDA toxicity. Mol Chem Neuropathol 27:259–273

    PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Crutcher KA, Scott SA, Liang S, Everson WV, Weingartner J (1993) Detection of NGF-like activity in human brain tissue: increased levels in Alzheimer’s disease. J Neurosci 13:2540–2550

    PubMed  CAS  Google Scholar 

  • Csernansky JG, Wang L, Joshi S, Miller JP, Gado M, Kido D, McKeel D, Morris JC, Miller MI (2000) Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus. Dementia of the Alzheimer type. Neurology 55:1636–1643

    PubMed  CAS  Google Scholar 

  • Cuenod CA, Kaplan DB, Michot JL, Jehenson P, Leroy-Willig A, Forette F, Syrota A, Boller F (1995) Phospholipid abnormalities in early Alzheimer’s disease. In vivo phosphorus 31 magnetic resonance spectroscopy. Arch Neurol 52:89–94

    PubMed  CAS  Google Scholar 

  • Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3:269–283

    Article  PubMed  CAS  Google Scholar 

  • Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101:2070–2075

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Rodger J, Hicks A, Mallet J, Laroche S (1996) Brain structure and task-specific increase in expression of the gene encoding syntaxin 1B during learning in the rat: a potential molecular marker for learning-induced synaptic plasticity in neural networks. Eur J Neurosci 8:2068–2074

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Rodger J, Stephan A, Hicks A, Mallet J, Laroche S (1998) Increase in syntaxin 1B mRNA in hippocampal and cortical circuits during spatial learning reflects a mechanism of trans-synaptic plasticity involved in establishing a memory trace. Learn Mem 5:375–390

    PubMed  CAS  Google Scholar 

  • Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, Austin G, Haroutunian V (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281:1401–1406

    Article  PubMed  CAS  Google Scholar 

  • DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, Cochran EJ, Kordower JH, Mufson EJ (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155

    Article  PubMed  CAS  Google Scholar 

  • DeLapp N, Wu S, Belagaje R, Johnstone E, Little S, Shannon H, Bymaster F, Calligaro D, Mitch C, Whitesitt C, Ward J, Sheardown M, Fink-Jensen A, Jeppesen L, Thomsen C, Sauerberg P (1998) Effects of the M1 agonist xanomeline on processing of human b-amyloid precursor protein (FAD, Swedish mutant) transfected into Chinese hamster ovary-m1 cells. Biochem Biophys Res Commun 244:156–160

    Article  PubMed  CAS  Google Scholar 

  • Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    PubMed  CAS  Google Scholar 

  • Dennis EA (1997) The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci 22:1–2

    Article  PubMed  CAS  Google Scholar 

  • Dewar D, Chalmers DT, Graham DI, McCulloch J (1991) Glutamate metabotropic and AMPA binding sites are reduced in Alzheimer’s disease: an autoradiographic study of the hippocampus. Brain Res 553:58–64

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Conn PJ (2000) Peripheral glutamate receptors: molecular biology and role in taste sensation. J Nutr 130:1039S–1042S

    PubMed  CAS  Google Scholar 

  • Du AT, Schuff N, Kramer JH, Ganzer S, Zhu XP, Jagust WJ, Miller BL, Reed BR, Mungas D, Yaffe K, Chui HC, Weiner MW (2004) Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology 62:422–427

    PubMed  CAS  Google Scholar 

  • Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70

    Article  PubMed  CAS  Google Scholar 

  • Eckert GP, Cairns NJ, Maras A, Gattaz WF, Muller WE (2000) Cholesterol modulates the membrane-disordering effects of β-amyloid peptides in the hippocampus: specific changes in Alzheimer’s disease. Dement Geriatr Cogn Disord 11:181–186

    Article  PubMed  CAS  Google Scholar 

  • Eckols K, Bymaster FP, Mitch CH, Shannon HE, Ward JS, DeLapp NW (1995) The muscarinic M1 agonist xanomeline increases soluble amyloid precursor protein release from Chinese hamster ovary-m1 cells. Life Sci 57:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF, Vitetta L, Nathan PJ (2006) Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9:175–189

    Article  PubMed  CAS  Google Scholar 

  • Emmerling MR, Moore CJ, Doyle PD, Carroll RT, Davis RE (1993) Phospholipase A2 activation influences the processing and secretion of the amyloid precursor protein. Biochem Biophys Res Commun 197:292–297

    Article  PubMed  CAS  Google Scholar 

  • Emmerling MR, Dudley DT, Dyer RD, Carroll RT, Doyle PD, Davis RE (1996) The role of arachidonic acid in the secretion of the amyloid precursor protein (APP). Ann N Y Acad Sci 777:310–315

    Article  PubMed  CAS  Google Scholar 

  • Estus S, Tucker HM, van Rooyen C, Wright S, Brigham EF, Wogulis M, Rydel RE (1997) Aggregated amyloid-β protein induces cortical neuronal apoptosis and concomitant “apoptotic” pattern of gene induction. J Neurosci 17:7736–7745

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA (2004) Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot Essent Fat Acids 71:161–169

    Article  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977

    Article  PubMed  CAS  Google Scholar 

  • Ferencik M, Novak M, Rovensky J, Rybar I (2001) Alzheimer’s disease, inflammation and non-steroidal anti-inflammatory drugs. Bratisl Lek Listy 102:123–132

    PubMed  CAS  Google Scholar 

  • Fleming LM, Johnson GV (1995) Modulation of the phosphorylation state of tau in situ: the roles of calcium and cyclic AMP. Biochem J 309:41–47

    PubMed  CAS  Google Scholar 

  • Fluhrer R, Capell A, Westmeyer G, Willem M, Hartung B, Condron MM, Teplow DB, Haass C, Walter J (2002) A non-amyloidogenic function of BACE-2 in the secretory pathway. J Neurochem 81:1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Flynn DD, Weinstein DA, Mash DC (1991) Loss of high-affinity agonist binding to M1 muscarinic receptors in Alzheimer’s disease: implications for the failure of cholinergic replacement therapies. Ann Neurol 29:256–262

    Article  PubMed  CAS  Google Scholar 

  • Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI (1995) Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 64:1888–1891

    PubMed  CAS  Google Scholar 

  • Forlenza OV, Spink JM, Dayanandan R, Anderton BH, Olesen OF, Lovestone S (2000) Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3β inhibition and in neurons. J Neural Transm 107:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Forlenza OV, Wacker P, Nunes PV, Yacubian J, Castro CC, Otaduy MC, Gattaz WF (2005) Reduced phospholipid breakdown in Alzheimer’s brains: a 31P spectroscopy study. Psychopharmacology (Berl) 180:359–365

    Article  CAS  Google Scholar 

  • Forlenza OV, Mendes CT, Marie SK, Gattaz WF (2007) Inhibition of phospholipase A2 reduces neurite outgrowth and neuronal viability. Prostaglandins Leukot Essent Fat Acids 76:47–55

    Article  CAS  Google Scholar 

  • Frade JM, Rodriguez-Tebar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383:166–168

    Article  PubMed  CAS  Google Scholar 

  • Frederick B, Satlin A, Wald LL, Hennen J, Bodick N, Renshaw PF (2002) Brain proton magnetic resonance spectroscopy in Alzheimer disease: changes after treatment with xanomeline. Am J Geriatr Psychiatry 10:81–88

    Article  PubMed  Google Scholar 

  • Friedman WJ (2000) Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci 20:6340–6346

    PubMed  CAS  Google Scholar 

  • Frisoni GB, Testa C, Zorzan A, Sabattoli F, Beltramello A, Soininen H, Laakso MP (2002) Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 73:657–664

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Ikegaya Y, Nishiyama N, Matsuki N (2000) Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn J Pharmacol 83:277–278

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Ikegaya Y, Nishikawa M, Nishiyama N, Matsuki N (2001) Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br J Pharmacol 132:1417–1422

    Article  PubMed  CAS  Google Scholar 

  • Fukushima D, Konishi M, Maruyama K, Miyamoto T, Ishiura S, Suzuki K (1993) Activation of the secretory pathway leads to a decrease in the intracellular amyloidogenic fragments generated from the amyloid protein precursor. Biochem Biophys Res Commun 194:202–207

    Article  PubMed  CAS  Google Scholar 

  • Garcao P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-β and prion peptides: role in neurodegeneration. J Neurosci Res 84:182–193

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Maras A, Cairns NJ, Levy R, Forstl H (1995) Decreased phospholipase A2 activity in Alzheimer brains. Biol Psychiatry 37:13–17

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Cairns NJ, Levy R, Forstl H, Braus DF, Maras A (1996) Decreased phospholipase A2 activity in the brain and in platelets of patients with Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 246:129–131

    Article  PubMed  CAS  Google Scholar 

  • Gaudreault SB, Chabot C, Gratton JP, Poirier J (2004) The caveolin scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor binding properties by inhibiting phospholipase A2 activity. J Biol Chem 279:356–362

    Article  PubMed  CAS  Google Scholar 

  • Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G (2000) Cloning and recombinant expression of a structurally novel human secreted phospholipase A2. J Biol Chem 275:39823–39826

    Article  PubMed  CAS  Google Scholar 

  • Gesquiere L, Cho W, Subbaiah PV (2002) Role of group IIa and group V secretory phospholipases A2 in the metabolism of lipoproteins. Substrate specificities of the enzymes and the regulation of their activities by sphingomyelin. Biochemistry 41:4911–4920

    Article  PubMed  CAS  Google Scholar 

  • Gijon MA, Spencer DM, Kaiser AL, Leslie CC (1999) Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A2. J Cell Biol 145:1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI (1999) Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 411:693–704

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, Gershfeld NL (1995) Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res 698:223–226

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg SD, Che S, Counts SE, Mufson EJ (2006) Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. J Neurochem 96:1401–1408

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    PubMed  CAS  Google Scholar 

  • Gomez-Pinilla F, So V, Kesslak JP (2001) Spatial learning induces neurotrophin receptor and synapsin I in the hippocampus. Brain Res 904:13–19

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez RG, Guimaraes AR, Moore GJ, Crawley A, Cupples LA, Growdon JH (1996) Quantitative in vivo 31P magnetic resonance spectroscopy of Alzheimer disease. Alzheimer Dis Assoc Disord 10:46–52

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Krajcer W, Salinska E, Lazarewicz JW (2002) N-methyl-d-aspartate receptor-mediated processing of β-amyloid precursor protein in rat hippocampal slices: in vitro–superfusion study. Folia Neuropathol 40:13–17

    PubMed  CAS  Google Scholar 

  • Gottfried C, Tramontina F, Goncalves D, Goncalves CA, Moriguchi E, Dias RD, Wofchuk ST, Souza DO (2002) Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H2O2. Mech Ageing Dev 123:1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Moretti M, Bohr I, Ziabreva I, Vailati S, Longhi R, Riganti L, Gaimarri A, McKeith IG, Perry RH, Aarsland D, Larsen JP, Sher E, Beattie R, Clementi F, Court JA (2006) Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer’s disease, Parkinson’s disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol Dis 23:481–489

    PubMed  CAS  Google Scholar 

  • Greenamyre JT, Penney JB, D’Amato CJ, Young AB (1987) Dementia of the Alzheimer’s type: changes in hippocampal l-[3H]glutamate binding. J Neurochem 48:543–551

    Article  PubMed  CAS  Google Scholar 

  • Griffin WS (2006) Inflammation and neurodegenerative diseases. Am J Clin Nutr 83:470S–474S

    PubMed  CAS  Google Scholar 

  • Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ (1999) Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol 58:740–747

    Article  PubMed  CAS  Google Scholar 

  • Guan ZZ, Zhang X, Ravid R, Nordberg A (2000) Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer’s disease. J Neurochem 74:237–243

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21:5089–5098

    PubMed  CAS  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77:1168–1180

    Article  PubMed  CAS  Google Scholar 

  • Han X, M Holtzman D, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–1859

    Article  PubMed  CAS  Google Scholar 

  • Hanyu H, Asano T, Sakurai H, Takasaki M, Shindo H, Abe K (2001) Magnetization transfer measurements of the hippocampus in the early diagnosis of Alzheimer’s disease. J Neurol Sci 188:79–84

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  • Haring R, Gurwitz D, Barg J, Pinkas-Kramarski R, Heldman E, Pittel Z, Wengier A, Meshulam H, Marciano D, Karton Y et al (1994) Amyloid precursor protein secretion via muscarinic receptors: reduced desensitization using the M1-selective agonist AF102B. Biochem Biophys Res Commun 203:652–658

    Article  PubMed  CAS  Google Scholar 

  • Harris ME, Carney JM, Cole PS, Hensley K, Howard BJ, Martin L, Bummer P, Wang Y, Pedigo NW Jr, Butterfield DA (1995) beta-Amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: implications for Alzheimer’s disease. Neuroreport 6:1875–1879

    PubMed  CAS  Google Scholar 

  • Hefti F (1983) Is Alzheimer disease caused by lack of nerve growth factor. Ann Neurol 13:109–110

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindahl E, Mousavi M, Zhang X, Ravid R, Nordberg A (1999) Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain. Brain Res Mol Brain Res 66:94–103

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A, Thomas A, Perry E, Bednar I, Nordberg A (2004) Nicotine reduces Aβ in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 19:2703–2710

    Article  PubMed  Google Scholar 

  • Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV (1991) High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350:678–683

    Article  PubMed  CAS  Google Scholar 

  • Herber DL, Severance EG, Cuevas J, Morgan D, Gordon MN (2004) Biochemical and histochemical evidence of nonspecific binding of α7nAChR antibodies to mouse brain tissue. J Histochem Cytochem 52:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Herholz K, Weisenbach S, Zundorf G, Lenz O, Schroder H, Bauer B, Kalbe E, Heiss WD (2004) In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 21:136–143

    Article  PubMed  CAS  Google Scholar 

  • Herlan G, Giese G, Wunderlich F (1979) Influence of nuclear membrane lipid fluidity on nuclear RNA release. Exp Cell Res 118:305–309

    Article  PubMed  CAS  Google Scholar 

  • Hernandez CM, Terry AV Jr (2005) Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor. Neuroscience 130:997–1012

    Article  PubMed  CAS  Google Scholar 

  • Herrero I, Miras-Portugal MT, Sanchez-Prieto J (1992) Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature 360:163–166

    Article  PubMed  CAS  Google Scholar 

  • Hetem LA, Danion JM, Diemunsch P, Brandt C (2000) Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology (Berl) 152:283–288

    Article  CAS  Google Scholar 

  • Hirabayashi T, Kume K, Hirose K, Yokomizo T, Iino M, Itoh H, Shimizu T (1999) Critical duration of intracellular Ca2+ response required for continuous translocation and activation of cytosolic phospholipase A2. J Biol Chem 274:5163–5169

    Article  PubMed  CAS  Google Scholar 

  • Hock C, Heese K, Muller-Spahn F, Hulette C, Rosenberg C, Otten U (1998) Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease. Neurosci Lett 241:151–154

    Article  PubMed  CAS  Google Scholar 

  • Holscher C (1995a) Inhibitors of cyclooxygenases produce amnesia for a passive avoidance task in the chick. Eur J Neurosci 7:1360–1365

    Article  PubMed  CAS  Google Scholar 

  • Holscher C (1995b) Prostaglandins play a role in memory consolidation in the chick. Eur J Pharmacol 294:253–259

    Article  PubMed  CAS  Google Scholar 

  • Holscher C, Rose SP (1994) Inhibitors of phospholipase A2 produce amnesia for a passive avoidance task in the chick. Behav Neural Biol 61:225–232

    Article  PubMed  CAS  Google Scholar 

  • Holscher C, Canevari L, Richter-Levin G (1995) Inhibitors of PLA2 and NO synthase cooperate in producing amnesia of a spatial task. Neuroreport 6:730–732

    PubMed  CAS  Google Scholar 

  • Honey GD, Honey RA, Sharar SR, Turner DC, Pomarol-Clotet E, Kumaran D, Simons JS, Hu X, Rugg MD, Bullmore ET, Fletcher PC (2005) Impairment of specific episodic memory processes by sub-psychotic doses of ketamine: the effects of levels of processing at encoding and of the subsequent retrieval task. Psychopharmacology (Berl) 181:445–457

    Article  CAS  Google Scholar 

  • Hong A (1995) The neural basis of learning and memory declines in aged rats. Sheng Li Ke Xue Jin Zhan 26:240–242

    PubMed  CAS  Google Scholar 

  • Hoozemans JJ, Veerhuis R, Janssen I, Rozemuller AJ, Eikelenboom P (2001) Interleukin-1β induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: implications for Alzheimer’s disease. Exp Gerontol 36:559–570

    Article  PubMed  CAS  Google Scholar 

  • Hu XY, Zhang HY, Qin S, Xu H, Swaab DF, Zhou JN (2002) Increased p75NTR expression in hippocampal neurons containing hyperphosphorylated tau in Alzheimer patients. Exp Neurol 178:104–111

    Article  PubMed  CAS  Google Scholar 

  • Huwiler A, Johansen B, Skarstad A, Pfeilschifter J (2001) Ceramide binds to the CaLB domain of cytosolic phospholipase A2 and facilitates its membrane docking and arachidonic acid release. FASEB J 15:7–9

    PubMed  CAS  Google Scholar 

  • Hynd MR, Scott HL, Dodd PR (2004) Differential expression of N-methyl-d-aspartate receptor NR2 isoforms in Alzheimer’s disease. J Neurochem 90:913–919

    Article  PubMed  CAS  Google Scholar 

  • Igaz LM, Vianna MR, Medina JH, Izquierdo I (2002) Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J Neurosci 22:6781–6789

    PubMed  CAS  Google Scholar 

  • Igaz LM, Bekinschtein P, Vianna MM, Izquierdo I, Medina JH (2004) Gene expression during memory formation. Neurotox Res 6:189–204

    PubMed  Google Scholar 

  • Ikeuchi Y, Nishizaki T, Matsuoka T, Sumikawa K (1997) Long-lasting enhancement of ACh receptor currents by lysophospholipids. Molecular Brain Research 45:317–320

    Article  PubMed  CAS  Google Scholar 

  • Ikonomovic MD, Mizukami K, Davies P, Hamilton R, Sheffield R, Armstrong DM (1997) The loss of GluR2(3) immunoreactivity precedes neurofibrillary tangle formation in the entorhinal cortex and hippocampus of Alzheimer brains. J Neuropathol Exp Neurol 56:1018–1027

    Article  PubMed  CAS  Google Scholar 

  • Ikonomovic MD, Mufson EJ, Wuu J, Cochran EJ, Bennett DA, DeKosky ST (2003) Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: correlation with Alzheimer’s neuropathology. J Alzheimers Dis 5:39–48

    PubMed  CAS  Google Scholar 

  • Ikonomovic MD, Mufson EJ, Wuu J, Bennett DA, DeKosky ST (2005) Reduction of choline acetyltransferase activity in primary visual cortex in mild to moderate Alzheimer’s disease. Arch Neurol 62:425–430

    Article  PubMed  Google Scholar 

  • Ingvar M, Ambros-Ingerson J, Davis M, Granger R, Kessler M, Rogers GA, Schehr RS, Lynch G (1997) Enhancement by an ampakine of memory encoding in humans. Exp Neurol 146:553–559

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2006) Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective. J Alzheimers Dis 9:219–242

    PubMed  CAS  Google Scholar 

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M et al (1993) Molecular characterization of the family of the N-methyl-d-aspartate receptor subunits. J Biol Chem 268:2836–2843

    PubMed  CAS  Google Scholar 

  • Izumi Y, Zarrin AR, Zorumski CF (2000) Arachidonic acid rescues hippocampal long-term potentiation blocked by group I metabotropic glutamate receptor antagonists. Neuroscience 100:485–491

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, Smith GE, Ivnik RJ, Kokmen E (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794

    PubMed  Google Scholar 

  • Jansen KL, Faull RL, Dragunow M, Synek BL (1990) Alzheimer’s disease: changes in hippocampal N-methyl-d-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors–an autoradiographic study. Neuroscience 39:613–627

    Article  PubMed  CAS  Google Scholar 

  • Jekabsone A, Mander PK, Tickler A, Sharpe M, Brown GC (2006) Fibrillar β-amyloid peptide Aβ1–40 activates microglial proliferation via stimulating TNF-α release and H2O2 derived from NADPH oxidase: a cell culture study. J Neuroinflammation 3:24

    Article  PubMed  CAS  Google Scholar 

  • Jessen F, Block W, Traber F, Keller E, Flacke S, Papassotiropoulos A, Lamerichs R, Heun R, Schild HH (2000) Proton MR spectroscopy detects a relative decrease of N-acetylaspartate in the medial temporal lobe of patients with AD. Neurology 55:684–688

    PubMed  CAS  Google Scholar 

  • Jolly-Tornetta C, Gao ZY, Lee VM, Wolf BA (1998) Regulation of amyloid precursor protein secretion by glutamate receptors in human Ntera 2 neurons. J Biol Chem 273:14015–14021

    Article  PubMed  CAS  Google Scholar 

  • Jonnala RR, Terry AV Jr, Buccafusco JJ (2002) Nicotine increases the expression of high affinity nerve growth factor receptors in both in vitro and in vivo. Life Sci 70:1543–1554

    Article  PubMed  CAS  Google Scholar 

  • Jupp OJ, Vandenabeele P, MacEwan DJ (2003) Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J 374:453–461

    Article  PubMed  CAS  Google Scholar 

  • Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A (2006) PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl) 188:509–520

    Article  CAS  Google Scholar 

  • Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: A 1H MRS study. Neurology 55:210–217

    PubMed  CAS  Google Scholar 

  • Kantarci K, Reynolds G, Petersen RC, Boeve BF, Knopman DS, Edland SD, Smith GE, Ivnik RJ, Tangalos EG, Jack CR Jr (2003) Proton MR spectroscopy in mild cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T. AJNR Am J Neuroradiol 24:843–849

    PubMed  Google Scholar 

  • Kanterman RY, Ma AL, Briley EM, Axelrod J, Felder CC (1990) Muscarinic receptors mediate the release of arachidonic acid from spinal cord and hippocampal neurons in primary culture. Neurosci Lett 118:235–237

    Article  PubMed  CAS  Google Scholar 

  • Katayama S, Kito S, Yamamura Y, Tahara E, Kanazawa I (1990) Alteration of muscarinic receptor subtypes in CA1 field of hippocampus in senile dementia of Alzheimer type: an autoradiographic study. Hiroshima J Med Sci 39:119–124

    PubMed  CAS  Google Scholar 

  • Kelly A, Lynch MA (1998) LTP occludes the interaction between arachidonic acid and ACPD and NGF and ACPD. Neuroreport 9:4087–4091

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kim YK, Jeong SJ, Haass C, Kim YH, Suh YH (1997) Enhanced release of secreted form of Alzheimer’s amyloid precursor protein from PC12 cells by nicotine. Mol Pharmacol 52:430–436

    PubMed  CAS  Google Scholar 

  • Kirazov L, Loffler T, Schliebs R, Bigl V (1997) Glutamate-stimulated secretion of amyloid precursor protein from cortical rat brain slices. Neurochem Int 30:557–563

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y (1999) Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, Mufson EJ (2001) Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49:202–213

    Article  PubMed  CAS  Google Scholar 

  • Krasuski JS, Alexander GE, Horwitz B, Daly EM, Murphy DG, Rapoport SI, Schapiro MB (1998) Volumes of medial temporal lobe structures in patients with Alzheimer’s disease and mild cognitive impairment (and in healthy controls). Biol Psychiatry 43:60–68

    Article  PubMed  CAS  Google Scholar 

  • Kriem B, Sponne I, Fifre A, Malaplate-Armand C, Lozac’h-Pillot K, Koziel V, Yen-Potin FT, Bihain B, Oster T, Olivier JL, Pillot T (2005) Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-β peptide. FASEB J 19:85–87

    PubMed  CAS  Google Scholar 

  • Kril JJ, Hodges J, Halliday G (2004) Relationship between hippocampal volume and CA1 neuron loss in brains of humans with and without Alzheimer’s disease. Neurosci Lett 361:9–12

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Abi-Saab W, Perry E, D’Souza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L, Breier A (2005) Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl) 179:303–309

    Article  CAS  Google Scholar 

  • Kudo I, Murakami M (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 68–69:3–58

    Article  PubMed  Google Scholar 

  • Lad SP, Neet KE, Mufson EJ (2003) Nerve growth factor: structure, function and therapeutic implications for Alzheimer’s disease. Curr Drug Targets CNS Neurol Disord 2:315–334

    Article  PubMed  CAS  Google Scholar 

  • Lahiri DK, Utsuki T, Chen D, Farlow MR, Shoaib M, Ingram DK, Greig NH (2002) Nicotine reduces the secretion of Alzheimer’s β-amyloid precursor protein containing β-amyloid peptide in the rat without altering synaptic proteins. Ann N Y Acad Sci 965:364–372

    Article  PubMed  CAS  Google Scholar 

  • Larsson PK, Claesson HE, Kennedy BP (1998) Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J Biol Chem 273:207–214

    Article  PubMed  CAS  Google Scholar 

  • Larsson Forsell PK, Kennedy BP, Claesson HE (1999) The human calcium-independent phospholipase A2 gene multiple enzymes with distinct properties from a single gene. Eur J Biochem 262:575–585

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz JW, Salinska E, Wroblewski JT (1992) NMDA receptor-mediated arachidonic acid release in neurons: role in signal transduction and pathological aspects. Adv Exp Med Biol 318:73–89

    PubMed  CAS  Google Scholar 

  • Lee RK, Wurtman RJ, Cox AJ, Nitsch RM (1995) Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci USA 92:8083–8087

    Article  PubMed  CAS  Google Scholar 

  • Lee RK, Jimenez J, Cox AJ, Wurtman RJ (1996) Metabotropic glutamate receptors regulate APP processing in hippocampal neurons and cortical astrocytes derived from fetal rats. Ann N Y Acad Sci 777:338–343

    Article  PubMed  CAS  Google Scholar 

  • Lee HG, Ogawa O, Zhu X, O’Neill MJ, Petersen RB, Castellani RJ, Ghanbari H, Perry G, Smith MA (2004) Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer’s disease. Acta Neuropathol (Berl) 107:365–371

    Article  CAS  Google Scholar 

  • Li XD, Arias E, Jonnala RR, Mruthinti S, Buccafusco JJ (2005) Effect of amyloid peptides on the increase in TrkA receptor expression induced by nicotine in vitro and in vivo. J Mol Neurosci 27:325–336

    Article  PubMed  CAS  Google Scholar 

  • Liskowsky W, Schliebs R (2006) Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int J Dev Neurosci 24:149–156

    Article  PubMed  CAS  Google Scholar 

  • Lofwall MR, Griffiths RR, Mintzer MZ (2006) Cognitive and subjective acute dose effects of intramuscular ketamine in healthy adults. Exp Clin Psychopharmacol 14:439–449

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    PubMed  CAS  Google Scholar 

  • Lynch G, Granger R, Ambros-Ingerson J, Davis CM, Kessler M, Schehr R (1997) Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged humans. Exp Neurol 145:89–92

    Article  PubMed  CAS  Google Scholar 

  • Mahadeo D, Kaplan L, Chao MV, Hempstead BL (1994) High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. Implications for multi-subunit polypeptide receptors. J Biol Chem 269:6884–6891

    PubMed  CAS  Google Scholar 

  • Maire JC, Wurtman RJ (1985) Effects of electrical stimulation and choline availability on the release and contents of acetylcholine and choline in superfused slices from rat striatum. J Physiol (Paris) 80:189–195

    CAS  Google Scholar 

  • Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier JL, Oster T, Pillot T (2006) Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 23:178–189

    Article  PubMed  CAS  Google Scholar 

  • Mancuso DJ, Jenkins CM, Gross RW (2000) The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium-independent phospholipase A2. J Biol Chem 275:9937–9945

    Article  PubMed  CAS  Google Scholar 

  • Martel MA, Patenaude C, Menard C, Alaux S, Cummings BS, Massicotte G (2006) A novel role for calcium-independent phospholipase A in α-amino-3-hydroxy-5-methylisoxazole-propionate receptor regulation during long-term potentiation. Eur J Neurosci 23:505–513

    Article  PubMed  Google Scholar 

  • Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, Tsouloufis T, Tzartos S, Ballard C, Perry RH, Perry EK (1999) α4 but not α3 and α7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 73:1635–1640

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E (2000) Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurol Scand 176:34–41

    Article  CAS  Google Scholar 

  • Mash DC, Flynn DD, Potter LT (1985) Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Massicotte G, Baudry M (1990) Modulation of DL-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/quisqualate receptors by phospholipase A2 treatment. Neurosci Lett 118:245–248

    Article  PubMed  CAS  Google Scholar 

  • Massicotte G, Vanderklish P, Lynch G, Baudry M (1991) Modulation of DL-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation. Proc Natl Acad Sci USA 88:1893–1897

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Kitayama N, Ohnishi T, Asada T, Nakano S, Sakamoto S, Imabayashi E, Katoh A (2002) Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med 43:304–311

    PubMed  Google Scholar 

  • McGahon B, Lynch MA (1994) A study of the synergism between metabotropic glutamate receptor activation and arachidonic acid in the rat hippocampus. Neuroreport 5:2353–2357

    Article  PubMed  CAS  Google Scholar 

  • McGahon B, Lynch MA (1996) The synergism between metabotropic glutamate receptor activation and arachidonic acid on glutamate release is occluded by induction of long-term potentiation in the dentate gyrus. Neuroscience 72:847–855

    Article  PubMed  CAS  Google Scholar 

  • McGahon B, Holscher C, McGlinchey L, Rowan MJ, Lynch MA (1996) Training in the Morris water maze occludes the synergism between ACPD and arachidonic acid on glutamate release in synaptosomes prepared from rat hippocampus. Learn Mem 3:296–304

    Article  PubMed  CAS  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  PubMed  CAS  Google Scholar 

  • Meguro K, LeMestric C, Landeau B, Desgranges B, Eustache F, Baron JC (2001) Relations between hypometabolism in the posterior association neocortex and hippocampal atrophy in Alzheimer’s disease: a PET/MRI correlative study. J Neurol Neurosurg Psychiatry 71:315–321

    Article  PubMed  CAS  Google Scholar 

  • Mendes CT, Gattaz WF, Schaeffer EL, Forlenza OV (2005) Modulation of phospholipase A2 activity in primary cultures of rat cortical neurons. J Neural Transm 112:1297–1308

    Article  PubMed  CAS  Google Scholar 

  • Miatto O, Gonzalez RG, Buonanno F, Growdon JH (1986) In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer’s disease. Can J Neurol Sci 13:535–539

    PubMed  CAS  Google Scholar 

  • Miller B, Sarantis M, Traynelis SF, Attwell D (1992) Potentiation of NMDA receptor currents by arachidonic acid. Nature 355:722–725

    Article  PubMed  CAS  Google Scholar 

  • Miller BL, Chang L, Booth R, Ernst T, Cornford M, Nikas D, McBride D, Jenden DJ (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58:1929–1935

    Article  PubMed  CAS  Google Scholar 

  • Mills J, Reiner PB (1999) Mitogen-activated protein kinase is involved in N-methyl-D-aspartate receptor regulation of amyloid precursor protein cleavage. Neuroscience 94:1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Mishizen-Eberz AJ, Rissman RA, Carter TL, Ikonomovic MD, Wolfe BB, Armstrong DM (2004) Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis 15:80–92

    Article  PubMed  CAS  Google Scholar 

  • Molloy GY, Rattray M, Williams RJ (1998) Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci Lett 258:139–142

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  PubMed  CAS  Google Scholar 

  • Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV (2004) Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology 29:208–218

    Article  PubMed  CAS  Google Scholar 

  • Moses GS, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY (2006) Secretory PLA2-IIA: a new inflammatory factor for Alzheimer’s disease. J Neuroinflammation 3:28

    Article  PubMed  CAS  Google Scholar 

  • Muccioli G, Raso GM, Ghe C, Di Carlo R (1996) Effect of l-a glycerylphosphorylcholine on muscarinic receptors and membrane microviscosity of aged rat brain. Prog Neuropsychopharmacol Biol Psychiatry 20:323–339

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Bothwell M, Kordower JH (1989) Loss of nerve growth factor receptor-containing neurons in Alzheimer’s disease: a quantitative analysis across subregions of the basal forebrain. Exp Neurol 105:221–232

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Conner JM, Kordower JH (1995) Nerve growth factor in Alzheimer’s disease: defective retrograde transport to nucleus basalis. Neuroreport 6:1063–1066

    PubMed  CAS  Google Scholar 

  • Mufson EJ, Lavine N, Jaffar S, Kordower JH, Quirion R, Saragovi HU (1997) Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s disease. Exp Neurol 146:91–103

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Ma SY, Cochran EJ, Bennett DA, Beckett LA, Jaffar S, Saragovi HU, Kordower JH (2000) Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 427:19–30

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Ma SY, Dills J, Cochran EJ, Leurgans S, Wuu J, Bennett DA, Jaffar S, Gilmor ML, Levey AI, Kordower JH (2002) Loss of basal forebrain p75NTR immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol 443:136–153

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Ikonomovic MD, Styren SD, Counts SE, Wuu J, Leurgans S, Bennett DA, Cochran EJ, DeKosky ST (2003) Preservation of brain nerve growth factor in mild cognitive impairment and Alzheimer disease. Arch Neurol 60:1143–1148

    Article  PubMed  Google Scholar 

  • Muller DM, Mendla K, Farber SA, Nitsch RM (1997a) Muscarinic M1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci 60:985–991

    Article  PubMed  CAS  Google Scholar 

  • Muller WE, Koch S, Scheuer K, Rostock A, Bartsch R (1997b) Effects of piracetam on membrane fluidity in the aged mouse, rat, and human brain. Biochem Pharmacol 53:135–140

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Hirabayashi T, Shimizu M, Murayama T (2006) Ceramide-1-phosphate activates cytosolic phospholipase A2α directly and by PKC pathway. Biochem Pharmacol 71:850–857

    Article  PubMed  CAS  Google Scholar 

  • Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    PubMed  CAS  Google Scholar 

  • Nalefski EA, McDonagh T, Somers W, Seehra J, Falke JJ, Clark JD (1998) Independent folding and ligand specificity of the C2 calcium-dependent lipid binding domain of cytosolic phospholipase A2. J Biol Chem 273:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Nashmi R, Lester HA (2006) CNS localization of neuronal nicotinic receptors. J Mol Neurosci 30:181–184

    Article  PubMed  CAS  Google Scholar 

  • Nestor PJ, Fryer TD, Smielewski P, Hodges JR (2003) Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 54:343–351

    Article  PubMed  Google Scholar 

  • Nestor PJ, Fryer TD, Hodges JR (2006) Declarative memory impairments in Alzheimer’s disease and semantic dementia. Neuroimage 30:1010–1020

    Article  PubMed  Google Scholar 

  • Nishizaki T, Matsuoka T, Nomura T, Enikolopov G, Sumikawa K (1999a) Arachidonic acid potentiates currents through Ca2+-permeable AMPA receptors by interacting with a CaMKII pathway. Molecular Brain Research 67:184–189

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki T, Nomura T, Matsuoka T, Enikolopov G, Sumikawa K (1999b) Arachidonic acid induces a long-lasting facilitation of hippocampal synaptic transmission by modulating PKC activity and nicotinic ACh receptors. Brain Res Mol Brain Res 69:263–272

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki T, Nomura T, Matsuoka T, Tsujishita Y (1999c) Arachidonic acid as a messenger for the expression of long-term potentiation. Biochem Biophys Res Commun 254:446–449

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Slack BE, Farber SA, Borghesani PR, Schulz JG, Kim C, Felder CC, Growdon JH, Wurtman RJ (1993) Receptor-coupled amyloid precursor protein processing. Ann N Y Acad Sci 695:122–127

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Deng A, Wurtman RJ, Growdon JH (1997) Metabotropic glutamate receptor subtype mGluR1α stimulates the secretion of the amyloid β-protein precursor ectodomain. J Neurochem 69:704–712

    PubMed  CAS  Google Scholar 

  • Nordberg A, Hellstrom-Lindahl E, Lee M, Johnson M, Mousavi M, Hall R, Perry E, Bednar I, Court J (2002) Chronic nicotine treatment reduces β-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J Neurochem 81:655–658

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JT, Colloby SJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, McKeith IG, Williams ED (2007) α4β2 nicotinic receptor status in Alzheimer’s disease using 123I-5IA-85380 single-photon-emission computed tomography. J Neurol Neurosurg Psychiatry 78:356–362

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Green KN, Liang K, Tran L, Chen Y, Leslie FM, LaFerla FM (2005) Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc Natl Acad Sci USA 102:3046–3051

    Article  PubMed  CAS  Google Scholar 

  • Ohanian J, Ohanian V (2001) Sphingolipids in mammalian cell signalling. Cell Mol Life Sci 58:2053–2068

    Article  PubMed  CAS  Google Scholar 

  • Ohto T, Uozumi N, Hirabayashi T, Shimizu T (2005) Identification of novel cytosolic phospholipase A2s, murine cPLA2{δ}, {ε}, and {ζ}, which form a gene cluster with cPLA2{β}. J Biol Chem 280:24576–24583

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Labruyere J, Price MT (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Labruyere J, Wang G, Sesma MA, Wozniak DF, Price MT (1991) NMDA antagonist neurotoxicity: mechanisms and protection. Science 254:1515–1518

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES (2004) AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 3:181–194

    Article  PubMed  CAS  Google Scholar 

  • Owada Y, Tominaga T, Yoshimoto T, Kondo H (1994) Molecular cloning of rat cDNA for cytosolic phospholipase A2 and the increased gene expression in the dentate gyrus following transient forebrain ischemia. Brain Res Mol Brain Res 25:364–368

    Article  PubMed  CAS  Google Scholar 

  • Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618

    Article  PubMed  CAS  Google Scholar 

  • Pajor L, Kalman E, Koszegi T (1989) The relationship of membrane fluidity to growth and nuclear cycle in mitogen stimulated lymphocytes. Acta Biol Hung 40:355–367

    PubMed  CAS  Google Scholar 

  • Pascale A, Gusev PA, Amadio M, Dottorini T, Govoni S, Alkon DL, Quattrone A (2004) Increase of the RNA-binding protein HuD and posttranscriptional up-regulation of the GAP-43 gene during spatial memory. Proc Natl Acad Sci USA 101:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Paterlini M, Valerio A, Baruzzi F, Memo M, Spano PF (1998) Opposing regulation of tau protein levels by ionotropic and metabotropic glutamate receptors in human NT2 neurons. Neurosci Lett 243:77–80

    Article  PubMed  CAS  Google Scholar 

  • Pearson RC, Sofroniew MV, Cuello AC, Powell TP, Eckenstein F, Esiri MM, Wilcock GK (1983) Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res 289:375–379

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro DE, Bennett MV, Zukin RS (1994) AMPA/kainate receptor gene expression in normal and Alzheimer’s disease hippocampus. Neuroscience 61:41–49

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Wolfe LS (1991) Release of arachidonic acid by NMDA-receptor activation in the rat hippocampus. Neurochem Res 16:983–989

    Article  PubMed  CAS  Google Scholar 

  • Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hanninen T, Laakso MP, Hallikainen M, Vanhanen M, Nissinen A, Helkala EL, Vainio P, Vanninen R, Partanen K, Soininen H (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310

    Article  PubMed  Google Scholar 

  • Penney JB, Maragos WF, Greenamyre JT, Debowey DL, Hollingsworth Z, Young AB (1990) Excitatory amino acid binding sites in the hippocampal region of Alzheimer’s disease and other dementias. J Neurol Neurosurg Psychiatry 53:314–320

    PubMed  CAS  Google Scholar 

  • Perisic O, Paterson HF, Mosedale G, Lara-Gonzalez S, Williams RL (1999) Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J Biol Chem 274:14979–14987

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001a) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001b) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1133–1142

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP, Cohen MM (1987) 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. J Neuropathol Exp Neurol 46:419–430

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Moossy J, Withers G, McKeag D, Panchalingam K (1988) 31P nuclear magnetic resonance study of the brain in Alzheimer’s disease. J Neuropathol Exp Neurol 47:235–248

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol Aging 15:117–132

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Klunk WE, Panchalingam K, Kanfer JN, McClure RJ (1995) Clinical and neurochemical effects of acetyl-l-carnitine in Alzheimer’s disease. Neurobiol Aging 16:1–4

    Article  PubMed  CAS  Google Scholar 

  • Pickard RT, Strifler BA, Kramer RM, Sharp JD (1999) Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J Biol Chem 274:8823–8831

    Article  PubMed  CAS  Google Scholar 

  • Pittel Z, Heldman E, Barg J, Haring R, Fisher A (1996) Muscarinic control of amyloid precursor protein secretion in rat cerebral cortex and cerebellum. Brain Res 742:299–304

    Article  PubMed  CAS  Google Scholar 

  • Power AE (2004) Muscarinic cholinergic contribution to memory consolidation: with attention to involvement of the basolateral amygdala. Curr Med Chem 11:987–996

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58:1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Prokazova NV, Zvezdina ND, Korotaeva AA (1998) Effect of lysophosphatidylcholine on transmembrane signal transduction. Biochemistry (Mosc) 63:31–37

    CAS  Google Scholar 

  • Qiu Y, Wu XJ, Chen HZ (2003) Simultaneous changes in secretory amyloid precursor protein and b-amyloid peptide release from rat hippocampus by activation of muscarinic receptors. Neurosci Lett 352:41–44

    Article  PubMed  CAS  Google Scholar 

  • Quevedo J, Vianna MR, Martins MR, Barichello T, Medina JH, Roesler R, Izquierdo I (2004) Protein synthesis, PKA, and MAP kinase are differentially involved in short- and long-term memory in rats. Behav Brain Res 154:339–343

    Article  PubMed  CAS  Google Scholar 

  • Rall JM, Mach SA, Dash PK (2003) Intrahippocampal infusion of a cyclooxygenase-2 inhibitor attenuates memory acquisition in rats. Brain Res 968:273–276

    Article  PubMed  CAS  Google Scholar 

  • Remy F, Mirrashed F, Campbell B, Richter W (2005) Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. Neuroimage 25:253–266

    Article  PubMed  Google Scholar 

  • Ringman JM, Cummings JL (2006) Current and emerging pharmacological treatment options for dementia. Behav Neurol 17:5–16

    PubMed  Google Scholar 

  • Rinne JO, Kaasinen V, Jarvenpaa T, Nagren K, Roivainen A, Yu M, Oikonen V, Kurki T (2003) Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:113–115

    Article  PubMed  CAS  Google Scholar 

  • Robinson DM, Keating GM (2006) Memantine: a review of its use in Alzheimer’s disease. Drugs 66:1515–1534

    Article  PubMed  CAS  Google Scholar 

  • Ross BM, Moszczynska A, Erlich J, Kish SJ (1998) Phospholipid-metabolizing enzymes in Alzheimer’s disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70:786–793

    Article  PubMed  CAS  Google Scholar 

  • Rossner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V (1998) p75 and TrkA receptor signaling independently regulate amyloid precursor protein mRNA expression, isoform composition, and protein secretion in PC12 cells. J Neurochem 71:757–766

    PubMed  CAS  Google Scholar 

  • Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A (1996) Activation of m1 muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem 66:877–880

    PubMed  CAS  Google Scholar 

  • Saez ET, Pehar M, Vargas MR, Barbeito L, Maccioni RB (2006) Production of nerve growth factor by b-amyloid-stimulated astrocytes induces p75NTR -dependent tau hyperphosphorylation in cultured hippocampal neurons. J Neurosci Res 84:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Sanfeliu C, Hunt A, Patel A (1990a) Exposure to N-methyl-d-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res 526:241–248

    Article  PubMed  CAS  Google Scholar 

  • Sanfeliu C, Hunt A, Patel AJ (1990b) Exposure to N-methyl-d-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res 526:241–248

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Ishida T, Irifune M, Tanaka K, Hirate K, Nakamura N, Nishikawa T (2007) Effect of NC-1900, an active fragment analog of arginine vasopressin, and inhibitors of arachidonic acid metabolism on performance of a passive avoidance task in mice. Eur J Pharmacol 560:36–41

    Article  PubMed  CAS  Google Scholar 

  • Satoi H, Tomimoto H, Ohtani R, Kitano T, Kondo T, Watanabe M, Oka N, Akiguchi I, Furuya S, Hirabayashi Y, Okazaki T (2005) Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience 130:657–666

    Article  PubMed  CAS  Google Scholar 

  • Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA 99:4703–4707

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer EL, Gattaz WF (2005) Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology (Berl) 181:392–400

    Article  CAS  Google Scholar 

  • Schaeffer EL, Gattaz WF (2007) Requirement of hippocampal phospholipase A2 activity for long-term memory retrieval in rats. J Neural Transm 114:379–385

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer EL, Bassi F Jr, Gattaz WF (2005) Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. J Neural Transm 112:641–647

    Article  PubMed  CAS  Google Scholar 

  • Scheuer K, Stoll S, Paschke U, Weigel R, Muller WE (1995) N-methyl-d-aspartate receptor density and membrane fluidity as possible determinants of the decline of passive avoidance performance in aging. Pharmacol Biochem Behav 50:65–70

    Article  PubMed  CAS  Google Scholar 

  • Scheuer K, Maras A, Gattaz WF, Cairns N, Forstl H, Muller WE (1996) Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer’s disease. Dementia 7:210–214

    Article  PubMed  CAS  Google Scholar 

  • Scheuer K, Rostock A, Bartsch R, Muller WE (1999) Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain. Pharmacopsychiatry 32:10–16

    PubMed  CAS  Google Scholar 

  • Schievella AR, Regier MK, Smith WL, Lin LL (1995) Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem 270:30749–30754

    Article  PubMed  CAS  Google Scholar 

  • Schuff N, Amend D, Ezekiel F, Steinman SK, Tanabe J, Norman D, Jagust W, Kramer JH, Mastrianni JA, Fein G, Weiner MW (1997) Changes of hippocampal N-acetyl aspartate and volume in Alzheimer’s disease. A proton MR spectroscopic imaging and MRI study. Neurology 49:1513–1521

    PubMed  CAS  Google Scholar 

  • Scott SA, Mufson EJ, Weingartner JA, Skau KA, Crutcher KA (1995) Nerve growth factor in Alzheimer’s disease: increased levels throughout the brain coupled with declines in nucleus basalis. J Neurosci 15:6213–6221

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2003) Aging, amyloid, and Alzheimer’s disease: a perspective in honor of Carl Cotman. Neurochem Res 28:1705–1713

    Article  PubMed  CAS  Google Scholar 

  • Sharifzadeh M, Naghdi N, Khosrovani S, Ostad SN, Sharifzadeh K, Roghani A (2005) Post-training intrahippocampal infusion of the COX-2 inhibitor celecoxib impaired spatial memory retention in rats. Eur J Pharmacol 511:159–166

    Article  PubMed  CAS  Google Scholar 

  • Sharp JD, White DL (1993) Cytosolic PLA2: mRNA levels and potential for transcriptional regulation. J Lipid Mediat 8:183–189

    PubMed  CAS  Google Scholar 

  • Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19

    PubMed  CAS  Google Scholar 

  • Smith CD, Gallenstein LG, Layton WJ, Kryscio RJ, Markesbery WR (1993) 31P magnetic resonance spectroscopy in Alzheimer’s and Pick’s disease. Neurobiol Aging 14:85–92

    Article  PubMed  CAS  Google Scholar 

  • Soderberg M, Edlund C, Alafuzoff I, Kristensson K, Dallner G (1992) Lipid composition in different regions of the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type. J Neurochem 59:1646–1653

    Article  PubMed  CAS  Google Scholar 

  • Song C, Chang XJ, Bean KM, Proia MS, Knopf JL, Kriz RW (1999) Molecular characterization of cytosolic phospholipase A2-β. J Biol Chem 274:17063–17067

    Article  PubMed  CAS  Google Scholar 

  • Sorg O, Horn TF, Yu N, Gruol DL, Bloom FE (1997) Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes. Mol Med 3:431–440

    PubMed  CAS  Google Scholar 

  • Spalding TA, Burstein ES (2006) Constitutive activity of muscarinic acetylcholine receptors. J Recept Signal Transduct Res 26:61–85

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL, Beach TG, Lukas RJ (1998) Immunohistochemical localization of nicotinic β2 and α4 receptor subunits in normal human brain and individuals with Lewy body and Alzheimer’s disease: preliminary observations. Neurosci Lett 256:151–154

    Article  PubMed  CAS  Google Scholar 

  • Stella N, Pellerin L, Magistretti PJ (1995) Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH-sensitive membrane phospholipase A2. J Neurosci 15:3307–3317

    PubMed  CAS  Google Scholar 

  • Stella N, Estelles A, Siciliano J, Tence M, Desagher S, Piomelli D, Glowinski J, Premont J (1997) Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J Neurosci 17:2939–2946

    PubMed  CAS  Google Scholar 

  • Stephenson DT, Lemere CA, Selkoe DJ, Clemens JA (1996) Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol Dis 3:51–63

    Article  PubMed  CAS  Google Scholar 

  • Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J, Little S, Kramer R, Clemens J (1999) Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27:110–128

    Article  PubMed  CAS  Google Scholar 

  • Stoub TR, deToledo-Morrell L, Stebbins GT, Leurgans S, Bennett DA, Shah RC (2006) Hippocampal disconnection contributes to memory dysfunction in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 103:10041–10045

    Article  PubMed  CAS  Google Scholar 

  • Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45:205–213

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Ishizaki J, Yokota Y, Higashino K, Ono T, Ikeda M, Fujii N, Kawamoto K, Hanasaki K (2000) Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A2s. J Biol Chem 275:5785–5793

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84

    Article  PubMed  CAS  Google Scholar 

  • Sze C, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ (2001) N-Methyl-d-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J Neurol Sci 182:151–159

    Article  PubMed  CAS  Google Scholar 

  • Talbot K, Young RA, Jolly-Tornetta C, Lee VM, Trojanowski JQ, Wolf BA (2000) A frontal variant of Alzheimer’s disease exhibits decreased calcium-independent phospholipase A2 activity in the prefrontal cortex. Neurochem Int 37:17–31

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Takeya R, Sumimoto H (2000) A novel intracellular membrane-bound calcium-independent phospholipase A2. Biochem Biophys Res Commun 272:320–326

    Article  PubMed  CAS  Google Scholar 

  • Tarr PE, Contursi C, Roncarati R, Noviello C, Ghersi E, Scheinfeld MH, Zambrano N, Russo T, D’Adamio L (2002) Evidence for a role of the nerve growth factor receptor TrkA in tyrosine phosphorylation and processing of β-APP. Biochem Biophys Res Commun 295:324–329

    Article  PubMed  CAS  Google Scholar 

  • Teaktong T, Graham A, Court J, Perry R, Jaros E, Johnson M, Hall R, Perry E (2003) Alzheimer’s disease is associated with a selective increase in α7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41:207–211

    Article  PubMed  Google Scholar 

  • Teaktong T, Graham AJ, Court JA, Perry RH, Jaros E, Johnson M, Hall R, Perry EK (2004) Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J Neurol Sci 225:39–49

    Article  PubMed  CAS  Google Scholar 

  • Teather LA, Packard MG, Bazan NG (2002) Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation. Learn Mem 9:41–47

    Article  PubMed  Google Scholar 

  • Teather LA, Packard MG, Smith DE, Ellis-Behnke RG, Bazan NG (2005) Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks. Neurobiol Learn Mem 84:75–84

    Article  PubMed  CAS  Google Scholar 

  • Teipel SJ, Pruessner JC, Faltraco F, Born C, Rocha-Unold M, Evans A, Moller HJ, Hampel H (2006) Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 253:794–800

    Article  PubMed  Google Scholar 

  • Tence M, Cordier J, Premont J, Glowinski J (1994) Muscarinic cholinergic agonists stimulate arachidonic acid release from mouse striatal neurons in primary culture. J Pharmacol Exp Ther 269:646–653

    PubMed  CAS  Google Scholar 

  • Thomas G, Bertrand F, Saunier B (2000) The differential regulation of group II(A) and group V low molecular weight phospholipases A2 in cultured rat astrocytes. J Biol Chem 275:10876–10886

    Article  PubMed  CAS  Google Scholar 

  • Thorns V, Mallory M, Hansen L, Masliah E (1997) Alterations in glutamate receptor 2/3 subunits and amyloid precursor protein expression during the course of Alzheimer’s disease and Lewy body variant. Acta Neuropathol (Berl) 94:539–548

    Article  CAS  Google Scholar 

  • Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal LJ, Corey-Bloom J (2000) The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 55:1278–1283

    PubMed  CAS  Google Scholar 

  • Tiraboschi P, Hansen LA, Alford M, Merdes A, Masliah E, Thal LJ, Corey-Bloom J (2002) Early and widespread cholinergic losses differentiate dementia with Lewy bodies from Alzheimer disease. Arch Gen Psychiatry 59:946–951

    Article  PubMed  Google Scholar 

  • Tocco G, Massicotte G, Standley S, Thompson RF, Baudry M (1992) Phospholipase A2-induced changes in AMPA receptor: an autoradiographic study. Neuroreport 3:515–518

    Article  PubMed  CAS  Google Scholar 

  • Tomassoni ML, Amori D, Magni MV (1999) Changes of nuclear membrane lipid composition affect RNA nucleocytoplasmic transport. Biochem Biophys Res Commun 258:476–481

    Article  PubMed  CAS  Google Scholar 

  • Tournier C, Thomas G, Pierre J, Jacquemin C, Pierre M, Saunier B (1997) Mediation by arachidonic acid metabolites of the H2O2-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2-terminal kinase). Eur J Biochem 244:587–595

    Article  PubMed  CAS  Google Scholar 

  • Ulas J, Cotman CW (1997) Decreased expression of N-methyl-d-aspartate receptor 1 messenger RNA in select regions of Alzheimer brain. Neuroscience 79:973–982

    Article  PubMed  CAS  Google Scholar 

  • Ulas J, Brunner LC, Geddes JW, Choe W, Cotman CW (1992) N-methyl-d-aspartate receptor complex in the hippocampus of elderly, normal individuals and those with Alzheimer’s disease. Neuroscience 49:45–61

    Article  PubMed  CAS  Google Scholar 

  • Ulus IH, Wurtman RJ (1997) Metabotropic glutamate receptor agonists increase release of soluble amyloid precursor protein derivatives from rat brain cortical and hippocampal slices. J Pharmacol Exp Ther 281:149–154

    PubMed  CAS  Google Scholar 

  • Ulus IH, Wurtman RJ, Mauron C, Blusztajn JK (1989) Choline increases acetylcholine release and protects against the stimulation-induced decrease in phosphatide levels within membranes of rat corpus striatum. Brain Res 484:217–227

    Article  PubMed  CAS  Google Scholar 

  • Underwood KW, Song C, Kriz RW, Chang XJ, Knopf JL, Lin LL (1998) A novel calcium-independent phospholipase A2, cPLA2-γ, that is prenylated and contains homology to cPLA2. J Biol Chem 273:21926–21932

    Article  PubMed  CAS  Google Scholar 

  • Unger C, Svedberg MM, Yu WF, Hedberg MM, Nordberg A (2006) Effect of subchronic treatment of memantine, galantamine, and nicotine in the brain of Tg2576 (APPswe) transgenic mice. J Pharmacol Exp Ther 317:30–36

    Article  PubMed  CAS  Google Scholar 

  • Utsuki T, Shoaib M, Holloway HW, Ingram DK, Wallace WC, Haroutunian V, Sambamurti K, Lahiri DK, Greig NH (2002) Nicotine lowers the secretion of the Alzheimer’s amyloid β-protein precursor that contains amyloid b-peptide in rat. J Alzheimer’s Dis 4:405–415

    CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Veroff AE, Bodick NC, Offen WW, Sramek JJ, Cutler NR (1998) Efficacy of xanomeline in Alzheimer disease: cognitive improvement measured using the Computerized Neuropsychological Test Battery (CNTB). Alzheimer Dis Assoc Disord 12:304–312

    PubMed  CAS  Google Scholar 

  • Vianna MR, Szapiro G, McGaugh JL, Medina JH, Izquierdo I (2001) Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc Natl Acad Sci USA 98:12251–12254

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Cassutti P, Tromba C, Salvaggio A, Melcangi RC, Racagni G (1992) High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem 59:600–606

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Racagni G (1994a) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol Pharmacol 46:986–992

    PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994b) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    PubMed  CAS  Google Scholar 

  • Wakabayashi K, Narisawa-Saito M, Iwakura Y, Arai T, Ikeda K, Takahashi H, Nawa H (1999) Phenotypic down-regulation of glutamate receptor subunit GluR1 in Alzheimer’s disease. Neurobiol Aging 20:287–295

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 158:328–337

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Li W, Benedetti NJ, Lee DH (2003) α 7 nicotinic acetylcholine receptors mediate β-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 278:31547–31553

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Miller JP, Gado MH, McKeel DW, Rothermich M, Miller MI, Morris JC, Csernansky JG (2006) Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type. Neuroimage 30:52–60

    Article  PubMed  Google Scholar 

  • Warpman U, Nordberg A (1995) Epibatidine and ABT 418 reveal selective losses of α 4 β 2 nicotinic receptors in Alzheimer brains. Neuroreport 6:2419–2423

    Article  PubMed  CAS  Google Scholar 

  • Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J (1999) Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn–Schmiedeberg’s Arch Pharmacol 360:609–615

    Article  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Winstead MV, Balsinde J, Dennis EA (2000) Calcium-independent phospholipase A2: structure and function. Biochim Biophys Acta 1488:28–39

    PubMed  CAS  Google Scholar 

  • Wolf MJ, Izumi Y, Zorumski CF, Gross RW (1995) Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett 377:358–362

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, Longo VD (2002) Peroxynitrite mediates neurotoxicity of amyloid β-peptide1–42- and lipopolysaccharide-activated microglia. J Neurosci 22:3484–3492

    PubMed  CAS  Google Scholar 

  • Xu J, Chalimoniuk M, Shu Y, Simonyi A, Sun AY, Gonzalez FA, Weisman GA, Wood WG, Sun GY (2003a) Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot Essent Fat Acids 69:437–448

    Article  CAS  Google Scholar 

  • Xu J, Yu S, Sun AY, Sun GY (2003b) Oxidant-mediated AA release from astrocytes involves cPLA2 and iPLA2. Free Radic Biol Med 34:1531–1543

    Article  PubMed  CAS  Google Scholar 

  • Yagami T, Ueda K, Asakura K, Nakazato H, Hata S, Kuroda T, Sakaeda T, Sakaguchi G, Itoh N, Hashimoto Y, Hori Y (2003) Human group IIA secretory phospholipase A2 potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels in cultured rat cortical neurons. J Neurochem 85:749–758

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Meguro K, Shimada M, Ishizaki J, Yamadori A, Sekita Y (2002) Five-year retrospective changes in hippocampal atrophy and cognitive screening test performances in very mild Alzheimer’s disease: the Tajiri Project. Neuroradiology 44:43–48

    Article  PubMed  CAS  Google Scholar 

  • Yang HC, Farooqui AA, Horrocks LA (1994) Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem Biophys Res Commun 199:1158–1166

    Article  PubMed  CAS  Google Scholar 

  • Yang HC, Mosior M, Ni B, Dennis EA (1999) Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J Neurochem 73:1278–1287

    Article  PubMed  CAS  Google Scholar 

  • Yasuda RP, Ikonomovic MD, Sheffield R, Rubin RT, Wolfe BB, Armstrong DM (1995) Reduction of AMPA-selective glutamate receptor subunits in the entorhinal cortex of patients with Alzheimer’s disease pathology: a biochemical study. Brain Res 678:161–167

    Article  PubMed  CAS  Google Scholar 

  • Yoon WJ, Won SJ, Ryu BR, Gwag BJ (2003) Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of Ca2+ deficiency. J Neurochem 85:525–533

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Kuwabara Y, Ichiya Y, Sasaki M, Fukumura T, Ichimiya A, Takita M, Ogomori K, Masuda K (1998) Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidyl benzilate—comparison with cerebral blood flow and cerebral glucose metabolism. Ann Nucl Med 12:35–42

    Article  PubMed  CAS  Google Scholar 

  • Yu AC, Chan PH, Fishman RA (1986) Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J Neurochem 47:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Yu AC, Chan PH, Fishman RA (1987) Arachidonic acid inhibits uptake of glutamate and glutamine but not of GABA in cultured cerebellar granule cells. J Neurosci Res 17:424–427

    Article  PubMed  CAS  Google Scholar 

  • Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005) High selective expression of a7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Meiri N, Xu H, Cavallaro S, Quattrone A, Zhang L, Alkon DL (2000) Spatial learning induced changes in expression of the ryanodine type II receptor in the rat hippocampus. FASEB J 14:290–300

    PubMed  CAS  Google Scholar 

  • Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-β peptide-induced mitochondrial dysfunction. J Neurosci 26:11111–11119

    Article  PubMed  CAS  Google Scholar 

  • Zuchner T, Perez-Polo JR, Schliebs R (2004) β-secretase BACE1 is differentially controlled through muscarinic acetylcholine receptor signaling. J Neurosci Res 77:250–257

    Article  PubMed  CAS  Google Scholar 

  • Zuchner T, Schliebs R, Perez-Polo JR (2005) Down-regulation of muscarinic acetylcholine receptor M2 adversely affects the expression of Alzheimer’s disease-relevant genes and proteins. J Neurochem 95:20–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelin L. Schaeffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, E.L., Gattaz, W.F. Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology 198, 1–27 (2008). https://doi.org/10.1007/s00213-008-1092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1092-0

Keywords

Navigation