Skip to main content
Log in

D1 but not D4 Dopamine Receptors are Critical for MDMA-Induced Neurotoxicity in Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

MDMA, an addictive psychostimulant-consumed worldwide, has the ability to induce neurotoxic effects and addiction in laboratory animals and in humans through its effects on monoaminergic systems. MDMA-induced neurotoxicity in mice occurs primarily in dopaminergic neurons and does not significantly affect the serotonergic system. As the neurotoxic effects of MDMA in mice involve excessive dopamine (DA) release, DA receptors are highly likely to play a role in MDMA neurotoxicity, but the specific dopamine receptor subtypes involved have not previously been determined definitively. In this study, dopamine D1 and D4 receptor knock-out mice (D1R−/− and D4R−/−) were used to determine whether these receptors are involved in MDMA neurotoxicity. D1R inactivation attenuated MDMA-induced hyperthermia, decreased the reduction of dopamine and dopamine metabolite levels, and protected against dopamine terminal loss and reactive astrogliosis as determined in the striatum, 7 days after MDMA treatment. In sharp contrast, inactivation of D4R did not prevent hyperthermia or the neurotoxic effects of MDMA. Altogether, these results indicate that D1R, but not D4R, plays a significant role in the dopaminergic striatal neurotoxicity observed after exposure to MDMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

D1R:

D1 dopamine receptor

D4R:

D4 dopamine receptor

D1R−/− :

D1 dopamine receptor knockout

D4R−/− :

D4 dopamine receptor knockout

DA:

Dopamine

DAT:

Dopamine transporter

DOPAC:

3,4-Dihidroxyphenylacetic acid

HVA:

Homovanillic acid

5-HT:

Serotonin

5-HIAA:

5-Hydroxyindolacetic acid

MDMA:

3,4-Methylenedioxymethamphetamine

PB:

Phosphate buffer

PBST:

Phosphate sodium buffer with triton

TH:

Tyrosine hydroxylase

References

  • Albers DS, Sonsalla PK (1995) Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J Pharmacol Exp Ther 275:1104–1114

    CAS  PubMed  Google Scholar 

  • Antonelli MC, Guillemin GJ, Raisman-Vozari R, Del-Bel EA, Aschner M, Collins MA, Tizabi Y, Moratalla R, West AK (2012) New strategies in neuroprotection and neurorepair. Neurotox Res 21:49–56

    Article  PubMed Central  PubMed  Google Scholar 

  • Ares-Santos S, Granado N, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2012) Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiol Dis 45:810–820

    Article  CAS  PubMed  Google Scholar 

  • Ares-Santos S, Granado N, Moratalla R (2013a) Role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med 273:437–453 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2013b) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology. doi:10.1038/npp.2013.307

  • Benamar K, Geller EB, Adler MW (2008) A new brain area affected by 3,4 methylenedioxymethamphetamine: a microdialysis-biotelemetry study. Eur J Pharmacol 596:84–88

    Article  CAS  PubMed  Google Scholar 

  • Broening HW, Bowyer JF, Slikker W Jr (1995) Age-dependent sensitivity of rats to the long-term effects of the serotonergic neurotoxicant (±)-3,4-methylenedioxymethamphetamine (MDMA) correlates with the magnitude of the MDMA-induced thermal response. J Pharmacol Exp Ther 275:325–333

    CAS  PubMed  Google Scholar 

  • Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 32:117–131

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  CAS  PubMed  Google Scholar 

  • Colado MI, O’Shea E, Green AR (2004) Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl) 173:249–263 (Review)

    Article  CAS  Google Scholar 

  • Cottler LB, Leung KS, Abdallah AB (2009) Test-re-test reliability of DSM-IV adopted criteria for 3,4-methylenedioxymethamphetamine (MDMA) abuse and dependence: a cross-national study. Addiction 104:1679–1690

    Article  PubMed Central  PubMed  Google Scholar 

  • Darmopil S, Muñetón-Gómez VC, de Ceballos ML, Bernson M, Moratalla R (2008) Tyrosine hydroxylase cells appearing in the mouse striatum after dopamine denervation are likely to be projection neurones regulated by L-DOPA. Eur J Neurosci 27:580–592

    Article  PubMed  Google Scholar 

  • Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66:603–613

    Article  CAS  PubMed  Google Scholar 

  • Docherty JR, Green AR (2010) The role of monoamines in the changes in body temperature induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and its derivatives. Br J Pharmacol 160:1029–1044 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Eisch AJ, Marshall JF (1998) Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse 30:433–445

    Article  CAS  PubMed  Google Scholar 

  • Espadas I, Darmopil S, Vergaño-Vera E, Ortiz O, Oliva I, Vicario-Abejón C, Martín ED, Moratalla R (2012) L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: insights into regulation and function. Neurobiol Dis 48:271–281

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Gesi M, Lenzi P, Ferrucci M, Pellegrini A, Ruggieri S, Casini A, Paparelli A (2002) Striatal postsynaptic ultrastructural alteration following methylene-dioxymethamphetamine administration. Ann N Y Acad Sci 965:381–398

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Lazzeri G, Lenzi P, Gesi M, Ferrucci M, Soldani P, Pellegrini A, Capobianco L, De Blasi A, Ruggieri S, Paparelli A (2003) Amphetamines induce ubiquitin-positive inclusions within striatal cells. Neurol Sci 24:182–183

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Lenzi P, Frenzilli G, Gesi M, Ferrucci M, Lazzeri G et al (2004) DNA damage and ubiquitinated neuronal inclusions in the substantia nigra and striatum of mice following MDMA (ecstasy). Psychopharmacology 173:353–363

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Lenzi P, Ferrucci M, Lazzeri G, di Poggio AB, Natale G, Busceti CL, Biagioni F, Giusiani M, Ruggieri S, Paparelli A (2005) Occurrence of neuronal inclusions combined with increased nigral expression of alpha-synuclein within dopaminergic neurons following treatment with amphetamine derivatives in mice. Brain Res Bull 65:405–413

    Article  CAS  PubMed  Google Scholar 

  • Friend DM, Keefe KA (2013) A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity. Neurosci Lett 555:243–247

    Google Scholar 

  • Gesi M, Ferrucci M, Giusiani M, Lenzi P, Lazzeri G, Alessandrì MG, Salvadorini A, Fulceri F, Pellegrini A, Fornai F, Paparelli A (2004) Loud noise enhances nigrostriatal dopamine toxicity induced by MDMA in mice. Microsc Res Tech 64:297–303

    Article  CAS  PubMed  Google Scholar 

  • Granado N, Escobedo I, O’Shea E, Colado MI, Moratalla R (2008a) Early loss of dopaminergic terminals in striosomes after MDMA administration to mice. Synapse 62:80–84

    Article  CAS  PubMed  Google Scholar 

  • Granado N, O’Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008b) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107:1102–1112

    CAS  PubMed  Google Scholar 

  • Granado N, Ortiz O, Suarez LM, Martin ED, Cena V, Solis JM et al (2008c) D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-induced arc and zif268 expression in the hippocampus. Cereb Cortex 18:1–12

    Article  PubMed  Google Scholar 

  • Granado N, Ares-Santos S, O’Shea E, Vicario-Abejon C, Colado MI, Moratalla R (2010) Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration: early loss of TH in striosomes after methamphetamine. Neurotox Res 18:48–58

    Article  PubMed Central  PubMed  Google Scholar 

  • Granado N, Ares-Santos S, Oliva I, O′Shea E, Martin ED, Colado MI et al (2011a) Dopamine D2R knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403

    Article  CAS  PubMed  Google Scholar 

  • Granado N, Lastres-Becker I, Ares-Santos S, Oliva I, Martin ED, Cuadrado A, Moratalla R (2011b) Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia 59:1850–1863

    Article  PubMed  Google Scholar 

  • Granado N, Ares-Santos S, Moratalla R (2013) Methamphetamine and Parkinson’s disease. Parkinson’s Dis. doi:10.1155/2013/308052

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Green AR, O’Shea E, Colado MI (2004) A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol 500:3–13 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Hansen JP, Riddle EL, Sandoval V, Brown JM, Gibb JW, Hanson GR, Fleckenstein AE (2002) Methylenedioxymethamphetamine decreases plasmalemmal and vesicular dopamine transport: mechanisms and implications for neurotoxicity. J Pharmacol Exp Ther 300:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Iversen LL, Glowinski J (1966) Regional studies of catecholamines in the rat brain. II. Rate of turnover of catecholamines in various brain regions. J Neurochem 113:671–682

    Article  Google Scholar 

  • Jensen KF, Olin J, Haykal-Coates N, O'Callaghan J, Miller DB, de Olmos JS (1993) Mapping toxicant-induced nervous system damage with a cupric silver stain: a quantitative analysis of neural degeneration induced by 3,4-methylenedioxymethamphetamine. NIDA Res Monogr 136:133–154

    Google Scholar 

  • Johnson EA, O’Callaghan JP, Miller DB (2004) Brain concentrations of d-MDMA are increased after stress. Psychopharmacology 173:278–286

    Article  CAS  PubMed  Google Scholar 

  • Kil HY, Zhang J, Piantadosi CA (1996) Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab 16:100–106

    Article  CAS  PubMed  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaVoie MJ, Hastings TG (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 19:1484–1491

    CAS  PubMed  Google Scholar 

  • Metzger RR, Haughey HM, Wilkins DG, Gibb JW, Hanson GR, Fleckenstein AE (2000) Methamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia. J Pharmacol Exp Ther 295:1077–1085

    CAS  PubMed  Google Scholar 

  • Moratalla R, Xu M, Tonegawa S, Graybiel AM (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc Natl Acad Sci USA 93:14928–14933

    Article  CAS  PubMed  Google Scholar 

  • Moratalla R, Ares-Santos S, Granado N (2014) Neurotoxicity of methamphetamine. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer-Verlag, New York Inc

  • O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6 J mouse. J Pharmacol Exp Ther 270:741–751

    PubMed  Google Scholar 

  • Ortiz O, Delgado-García JM, Espadas I, Bahí A, Trullas R, Dreyer JL et al (2010) Associative learning and CA3-CA1 synaptic plasticity are impaired in D1R null, Drd1a-/- mice and in hippocampal siRNA silenced Drd1a mice. J Neurosci 30:12288–12300

    Article  CAS  PubMed  Google Scholar 

  • Parrott AC (2005) Chronic tolerance to recreational MDMA (3,4-methylenedioxymethamphetamine) or Ecstasy. J Psychopharmacol. 19(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Pavon N, Martin AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59:64–74

    Article  CAS  PubMed  Google Scholar 

  • Puerta E, Hervias I, Goñi-Allo B, Zhang SF, Jordán J, Starkov AA, Aguirre N (2010) Methylenedioxymethamphetamine inhibits mitochondrial complex I activity in mice: a possible mechanism underlying neurotoxicity. Br J Pharmacol 160:233–245

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues TB, Granado N, Ortiz O, Cerdán S, Moratalla R (2007) Metabolic interactions between glutamatergic and dopaminergic neurotransmitter systems are mediated through D(1) dopamine receptors. J Neurosci Res 85:3284–3293

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 240:1–7

    CAS  PubMed  Google Scholar 

  • Spencer JP, Whiteman M, Jenner P, Halliwell B (2002) 5-s-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. J Neurochem 81:122–129

    Article  CAS  PubMed  Google Scholar 

  • Tristão FSM, Amar M, Latrous I, Del-Bel EA, Prediger RD, Raisman-Vozari R (2013) Evaluation of nigrostriatal neurodegeneration and neuroinflammation following repeated intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice, an experimental model of Parkinson’s disease. Neurotox Res. doi:10.1007/s12640-013-9401-8

  • UNODC (2012) World Drug Report. United Nations Publication, New York

    Google Scholar 

  • Urrutia A, Granado N, Gutierrez-Lopez MD, Moratalla R, O’Shea E, Colado MI (2013) The JNK inhibitor, SP600125, potentiates the glial response and cell death induced by methamphetamine in the mouse striatum. Int J Neuropsychopharmacol. doi:10.1017/S1461145713000850

  • Vanattou-Saïfoudine N, McNamara R, Harkin A (2010) Mechanisms mediating the ability of caffeine to influence MDMA (‘Ecstasy’)-induced hyperthermia in rats. Br J Pharmacol 160:860–877

    Article  PubMed  Google Scholar 

  • Xie T, McCann UD, Kim S, Yuan J, Ricaurte GA (2000) Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity. J Neurosci 20:7838–7845

    CAS  PubMed  Google Scholar 

  • Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM et al (1994) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79:729–742

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Zhu JP, Angulo JA (2005) Induction of striatal pre- and postsynaptic damage by methamphetamine requires the dopamine receptors. Synapse 58:110–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the Spanish Ministry of Ciencia e Innovación: Grant No. BFU2010-20664, Spanish Ministries of Economía y Competitividad and of Sanidad, Servicios Sociales e Igualdad, ISCIII, PNSD nº 2012/071, RedRTA (RD06/0001/1011), CIBERNED ref CB06/05/0055 and Comunidad de Madrid ref S2011/BMD-2336 to RM. NG received a Juan de la Cierva post-doctoral fellowship and a research contract NEUROSTEM-M S2010/BMD-2336 and SAS received a JAE pre-doctoral fellowship from the CSIC. The authors would like to thank Prof. MI Colado and E O’Shea for their assistance with the HPLC experiments and to Mrs Emilia Rubio and Mr Marco de Mesa for their excellent technical assistance and Dr. Andrés Urrutia, for his help technical assistance with HPLC. MDMA hydrochloride was obtained from NIDA (Research Triangle Park, North Carolina, USA).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moratalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granado, N., Ares-Santos, S. & Moratalla, R. D1 but not D4 Dopamine Receptors are Critical for MDMA-Induced Neurotoxicity in Mice. Neurotox Res 25, 100–109 (2014). https://doi.org/10.1007/s12640-013-9438-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9438-8

Keywords

Navigation