Skip to main content

Advertisement

Log in

Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

The majority of experimental and clinical studies on the pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) tend to focus on its action on 5-HT biochemistry and function. However, there is considerable evidence for MDMA having marked acute effects on dopamine release. Furthermore, while MDMA produces long-term effects on 5-HT neurones in most species examined, in mice its long-term effects appear to be restricted to the dopamine system. The objective of this review is to examine the actions of MDMA on dopamine biochemistry and function in mice, rats, guinea pigs, monkeys and humans.

Results and discussion

MDMA appears to produce a major release of dopamine from its nerve endings in all species investigated. This release plays a significant role in the expression of many of the behaviours that occur, including behavioural changes, alterations of the mental state in humans and the potentially life-threatening hyperthermia that can occur. While MDMA appears to be a selective 5-HT neurotoxin in most species examined (rats, guinea pigs and primates), it is a selective dopamine neurotoxin in mice. Selectivity may be a consequence of what neurotoxic metabolites are produced (which may depend on dosing schedules), their selectivity for monoamine nerve endings, or the endogenous free radical trapping ability of specific nerve endings, or both. We suggest more focus be made on the actions of MDMA on dopamine neurochemistry and function to provide a better understanding of the acute and long-term consequences of using this popular recreational drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achat-Mendes C, Anderson KL, Itzhak Y (2003) Methylphenidate and MDMA adolescent exposure in mice: long-lasting consequences on cocaine-induced reward and psychomotor stimulation in adulthood. Neuropharmacology 45:106–115

    Article  CAS  PubMed  Google Scholar 

  • Ali SF, Itzhak Y (1998) Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice. Ann N Y Acad Sci 844:122–130

    CAS  PubMed  Google Scholar 

  • Baggott BA, Mendelson J, Jones R (1999) More about Parkinsonism after taking ecstasy N Engl J Med 341:1400–1401

    CAS  Google Scholar 

  • Bai F, Lau SS, Monks TJ (1999) Glutathione and N-acetylcysteine conjugates of alpha-methyldopamine produce serotonergic neurotoxicity: possible role in methylenedioxyamphetamine-mediated neurotoxicity. Chem Res Toxicol 12:1150–1157

    CAS  PubMed  Google Scholar 

  • Bai F, Jones DC, Lau SS, Monks TJ (2001) Serotonergic neurotoxicity of 3,4-(±)-methylenedioxyamphetamine and 3,4-(±)-methylendioxymethamphetamine (ecstasy) is potentiated by inhibition of γ-glutamyl transpeptidase. Chem Res Toxicol 14:863–870

    Article  CAS  PubMed  Google Scholar 

  • Bankson MG, Cunningham KA (2001) 3,4-Methylenedioxymethamphetamine as a unique model of serotonin receptor function and serotonin-dopamine interactions. J Pharmacol Exp Ther 297:846–852

    CAS  PubMed  Google Scholar 

  • Bankson MG, Cunningham KA (2002) Pharmacological studies of the acute effects of (+)-3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-HT1B/1D and 5-HT2 receptors. Neuropsychopharmacology 26:40–52

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Yeh SY, O’Hearn E, Molliver ME, Kuhar MJ, De Souza EB (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites. J Pharmacol Exp Ther 242:911–916

    CAS  PubMed  Google Scholar 

  • Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB (1988a) Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149:159–163

    CAS  PubMed  Google Scholar 

  • Battaglia G, Yeh SY, De Souza EB (1988b) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol Biochem Behav 29:269–274

    CAS  PubMed  Google Scholar 

  • Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A, Mossner R, Westphal H, Lesch KP (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53:649–655

    CAS  PubMed  Google Scholar 

  • Berger UV, Gu XF, Azmitia EC (1992) The substituted amphetamines 3,4-methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine. Eur J Pharmacol 215:153–160

    CAS  PubMed  Google Scholar 

  • Bowyer JF, Young JF, Slikker W, Itzhak Y, Mayorga AJ, Newport GD, Ali SF, Frederick DL, Paule MG (2003). Plasma levels of parent compound and metabolites after doses of either d-fenfluramine or d-3,4-methylenedioxymethamphetamine (MDMA) that produce long-term serotonergic alterations. Neurotoxicology 24:379–390

    Article  CAS  PubMed  Google Scholar 

  • Bradberry CW, Nobiletti JB, Elsworth JD, Murphy B, Jatlow P, Roth RH (1993) Cocaine and cocaethylene: microdialysis comparison of brain drug levels and effects on dopamine and serotonin. J Neurochem 60:1429–1435

    CAS  PubMed  Google Scholar 

  • Broening HW, Bowyer JF, Slikker Jr W (1995) Age-dependent sensitivity of rats to the long-term effects of the serotonergic neurotoxicant (±)-3,4-methylenedioxymethamphetamine (MDMA) correlates with the magnitude of the MDMA-induced thermal response. J Pharmacol Exp Ther 275:325–333

    CAS  PubMed  Google Scholar 

  • Cadet JL, Ladenheim B, Baum I, Carlson E, Epstein C (1994) CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Res 655:259–262

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Ladenheim B, Hirata H, Rothman RB, Ali S, Carlson E, Epstein C, Moran TH (1995) Superoxide radicals mediate the biochemical effects of methylenedioxymethamphetamine (MDMA): evidence from using CuZn-superoxide dismutase transgenic mice. Synapse 21:169–176

    CAS  PubMed  Google Scholar 

  • Cadet JL, Thiriet N, Jayanthi S (2001) Involvement of free radicals in MDMA-induced neurotoxicity in mice. Ann Med Int 152:1S57–1S59

    CAS  Google Scholar 

  • Callaway CW, Geyer MA (1992) Stimulant effects of 3,4-methylenedioxymethamphetamine in the nucleus accumbens of rat. Eur J Pharmacol 214:45–51

    CAS  PubMed  Google Scholar 

  • Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254:456–464

    CAS  PubMed  Google Scholar 

  • Camarero J, Sanchez V, O’Shea E, Green AR, Colado MI (2002) Studies, using in vivo microdialysis, on the effect of the dopamine uptake inhibitor GBR 12909 on 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”)-induced dopamine release and free radical formation in the mouse striatum. J Neurochem 81:961–972

    Article  PubMed  Google Scholar 

  • Cappon GD, Morford LL, Vorhees CV (1998) Enhancement of cocaine-induced hyperthermia fails to elicit neurotoxicity. Neurotoxicol Teratol 20:531–535

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Carvalho F, Remiao F, de Lourdes Pereira M, Pires-das-Neves R, de Lourdes Bastos M (2002) Effect of 3,4-methylenedioxymethamphetamine (“ecstasy”) on body temperature and liver antioxidant status in mice: influence of ambient temperature. Arch Toxicol 76:166–172

    Google Scholar 

  • Che S, Johnson M, Hanson GR, Gibb JW (1995) Body temperature effect on methylenedioxymethamphetamine-induced acute decrease in tryptophan hydroxylase activity. Eur J Pharmacol 293:447–453

    Article  CAS  PubMed  Google Scholar 

  • Chu T, Kumagai Y, Distefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796

    Article  CAS  PubMed  Google Scholar 

  • Colado MI, Green AR (1994) A study of the mechanism of MDMA (“ecstasy”)-induced neurotoxicity of 5-HT neurons using chlormethiazole, dizocilpine and other protective compounds. Br J Pharmacol 111:131–136

    CAS  PubMed  Google Scholar 

  • Colado MI, Murray TK, Green AR (1993) 5-HT loss in rat brain following 3,4-methylenedioxymethamphetamine (MDMA), p-chloroamphetamine and fenfluramine administration and effects of chlormethiazole and dizocilpine. Br J Pharmacol 108:583–589

    CAS  PubMed  Google Scholar 

  • Colado MI, Williams JL, Green AR (1995) The hyperthermic and neurotoxic effects of “ecstasy” (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the Dark Agouti (DA) rat, a model of the CYP2D6 poor metabolizer phenotype. Br J Pharmacol 115:1281–1289

    CAS  PubMed  Google Scholar 

  • Colado MI, O’Shea E, Granados R, Murray TK, Green AR (1997) In vivo evidence for free radical involvement in 5-HT following administration of MDMA (“ecstasy”) and p-chloroamphetamine but not the degeneration following fenfluramine. Br J Pharmacol 121:889–900

    CAS  PubMed  Google Scholar 

  • Colado MI, O’Shea E, Granados R, Esteban B, Martín AB, Green AR (1999) Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) administration. Br J Pharmacol 126:911–924

    CAS  PubMed  Google Scholar 

  • Colado MI, Camarero J, Mechan AO, Sanchez V, Esteban B, Elliott JM, Green AR (2001) A study of the mechanisms involved in the neurotoxic action of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on dopamine neurones in mouse brain. Br J Pharmacol 134:1711–1723

    CAS  PubMed  Google Scholar 

  • Cole JC, Sumnall HR (2003) The pre-clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA). Neurosci Biobehav Rev 27:199–217

    Article  CAS  PubMed  Google Scholar 

  • Cole JC, Sumnall HR, O’Shea E, Marsden CA (2003) Effects of MDMA exposure on the conditioned place preference produced by other drugs of abuse. Psychopharmacology 166:383–390

    CAS  PubMed  Google Scholar 

  • Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987) Biochemical and histological evidence that methylenedioxymethamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241:338–345

    CAS  PubMed  Google Scholar 

  • Compan V, Scearce-Levie K, Crosson C, Daszuta A, Hen R. (2003) Enkephalin contributes to the locomotor stimulating effects of 3,4-methylenedioxy-N-methylamphetamine. Eur J Neurosci 18:383–390

    Article  CAS  PubMed  Google Scholar 

  • Crespi D, Mennini T, Gobbi M (1997) Carrier-dependent and Ca2+-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylenedioxymethamphetamine, p-chloroamphetamine and (+)-fenfluramine. Br J Pharmacol 121:1735–1743

    CAS  PubMed  Google Scholar 

  • Dafters RI (1994) Effect of ambient temperature on hyperthermia and hyperkinesis induced by 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) in rats. Psychopharmacology 114:505–508

    Google Scholar 

  • Dafters RI (1995) Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing. Physiol Behav 58:877–882

    CAS  PubMed  Google Scholar 

  • de la Torre R, Farré M, Ortuño J, Mas M, Brenneisen R, Roset PN, Segura J, Camí J (2000) Non-linear pharmacokinetics of MDMA (“ecstasy”) in humans. Br J Clin Pharmacol 49:104–109

    PubMed  Google Scholar 

  • Esteban B, O’Shea E, Camarero J, Green AR, Colado MI (2001) 3,4-methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose. Psychopharmacology 154:251–260

    Article  CAS  PubMed  Google Scholar 

  • Falk EM, Cook VJ, Nichols DE, Sprague JE (2002) An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol Biochem Behav 72:617–622

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Godlewski T, Karabenick RL, Stephens JM, Ullrich T, Rice KC, Woods JH (2003) Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine (“ecstasy”) and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice. Psychopharmacology 166:202–211

    CAS  PubMed  Google Scholar 

  • Fischer C, Hatzidimitriou G, Wlos J, Katz J, Ricaurte G (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (±)-3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurosci 15:5476–5485

    PubMed  Google Scholar 

  • Fletcher PJ, Robinson SR, Slippoy DL (2001) Pre-exposure to (±)3,4-methylenedioxymethamphetamine (MDMA) facilitates acquisition of intravenous cocaine self-administration. Neuropsychopharmacology 25:195–203

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PJ, Korth KM, Robinson SR, Baker GB (2002) Multiple 5-HT receptors are involved in the effects of acute MDMA treatment: studies on locomotor activity and responding for conditioned reinforcement. Psychopharmacology 162:282–291

    Google Scholar 

  • Gerra G, Zaimovic A, Moi G, Giusti F, Gardini S, Delsignore R, Laviola G, Macchia T, Brambilla F (2002) Effects of (±) 3,4-methylenedioxymethamphetamine (ecstasy) on dopamine system function in humans. Behav Brain Res 134:403–410

    Article  CAS  PubMed  Google Scholar 

  • Gibb JW, JohnsonM, Stone D, Hanson GR (1990) MDMA: historical perspectives. Ann N Y Acad Sci 600:601–612

    CAS  PubMed  Google Scholar 

  • Gold LH, Koob GF (1988) Methysergide potentiates the hyperactivity produced by MDMA in rats. Pharmacol Biochem Behav 29:645–648

    CAS  PubMed  Google Scholar 

  • Gold LH, Hubner CB, Koob GF (1989) A role for the mesolimbic dopamine system in the psychostimulant actions of MDMA. Psychopharmacology 99:40–47

    CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Meyer UA (1991) Molecular genetics of the debrisoquin-sparteine polymorphism Clin Pharmacol Ther 50:233–238

    Google Scholar 

  • Gough B, Ali SF, Slikker Jr W, Holson RR (1991) Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in rat caudate. Pharmacol Biochem Behav 39:619–623

    Article  CAS  PubMed  Google Scholar 

  • Grahame-Smith DG (1971a) Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and l-tryptophan. J Neurochem 18:1053–1066

    CAS  PubMed  Google Scholar 

  • Grahame-Smith DG (1971b) Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by l-tryptophan or 5-methoxy-N, N-dimethyltyptamine in rats treated with a monoamine inhibitor. Br J Pharmacol 43:854–864

    Google Scholar 

  • Green AR, Heal DJ (1985) The effect of drugs on serotonin-mediated behavioural models. In: Green AR (ed) Neuropharmacology of serotonin. Oxford University Press, Oxford, pp 326–365

  • Green AR, De Souza RJ, Williams JL, Murray TK, Cross AJ (1992) The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in the brain: evidence for the protective effect of chlormethiazole. Neuropharmacology 31:315–321

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Gudelsky GA, Yamamoto BK, Nash JF (1994) Potentiation of 3,4-methylenedioxymethamphetamine-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists. Eur J Pharmacol 264:325–330

    Article  CAS  PubMed  Google Scholar 

  • Hansen JP, Riddle EL, Sandoval V, Brown JM, Gibb JW, Hanson GR, Fleckenstein AE (2002) Methylenedioxymethamphetamine decreases plasmalemmal and vesicular dopamine transport: mechanisms and implications for toxicity. J Pharmacol Exp Ther 300:1093–1100

    Google Scholar 

  • Hatzidimitriou G, McCann UD, Ricaurte GA (1999) Altered serotonin innervation patterns in the forebrain of monkeys treated with (±)3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery. J Neurosci 19:5096–5107

    CAS  PubMed  Google Scholar 

  • Hatzidimitriou G, Tsai EH, McCann UD, Ricaurte GA (2002) Altered prolactin response to m-chlorophenylpiperasine in monkeys previously treated with 3,4-methylenedioxymethamphetamine (MDMA) or fenfluramine. Synapse 44:51–57

    Article  CAS  PubMed  Google Scholar 

  • Heidbreder CA, Thompson AC, Shippenberg TS (1996) Role of extracellular dopamine in the initiation and long term expression of behavioural sensitization to cocaine. J Pharmacol Exp Ther 278:490–502

    CAS  PubMed  Google Scholar 

  • Hekmatpanah CR, McKenna DJ, Peroutka SJ (1989) Reserpine does not prevent 3,4-methylenedioxymethamphetamine-induced neurotoxicity in the rat. Neurosci Lett 104:178–182

    Article  CAS  PubMed  Google Scholar 

  • Henry JA, Jeffreys KJ, Dawling S (1992) Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet 340:384–387

    CAS  PubMed  Google Scholar 

  • Hewitt KE, Green AR (1994) Chlormethiazole, dizocilpine and haloperidol prevent the degeneration of serotonergic nerve terminals induced by administration of MDMA (“ecstasy”) to rats. Neuropharmacology 33:1589–1595

    Google Scholar 

  • Hiramatsu M, Kumagai Y, Unger SE, Cho AK (1990) Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. J Pharmacol Exp Ther 254:521–527

    CAS  PubMed  Google Scholar 

  • Horan B, Gardner EL, Ashby CR Jr (2000) Enhancement of conditioned place preference response to cocaine in rats following subchronic administration of 3,4-methylenedioxymethamphetamine (MDMA). Synapse 35:160–162

    Article  CAS  PubMed  Google Scholar 

  • Imam SZ, Crow JP, Newport GD, Islam F, Slikker Jr W, Ali SF (1999) Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst. Brain Res 837:15–21

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Battaglia G, Johannessen JN, Marra S, De Souza EB (1989) 3,4-methylenedioxymethamphetamine (“ecstasy”) selectively destroys brain serotonin terminals in Rhesus monkeys. J Pharmacol Exp Ther 249:713–720

    CAS  PubMed  Google Scholar 

  • Iravani MM, Kackson MJ, Kuoppamäki M, Smith LA, Jenner P (2003) 3,4-Methylenedioxymethamphetamine (ecstasy) inhibits dyskinesia expression and normalizes motor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Neurosci 23:9107–9115

    PubMed  Google Scholar 

  • Itzhak Y, Gandia C, Huang PL, Ali SF (1998) Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. J Pharmacol Exp Ther 284:1040–1047

    CAS  PubMed  Google Scholar 

  • Itzhak Y, Martin JL, Ali SF (2000) nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice. NeuroReport 11:2943–2946

    CAS  PubMed  Google Scholar 

  • Itzhak Y, Ali SF, Achat CN, Anderson KL (2003) Relevance of MDMA (“ecstasy”)-induced neurotoxicity to long-lasting psychomotor stimulation in mice. Psychopharmacology 166:241–248

    CAS  PubMed  Google Scholar 

  • Jayanthi S, Ladenheim B, Andrews AM, Cadet JL (1999) Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (ecstasy). Neuroscience 91:1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA, Sharp DS, Miller DB (2000) Restraint as a stressor in mice: against the dopaminergic neurotoxicity of d-MDMA, low body weight mitigates restraint-induced hypothermia and consequent neuroprotection. Brain Res 875:107–118

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA, O’Callaghan JP, Miller DB (2002a) Chronic treatment with supraphysiological levels of corticosterone enhances D-MDMA-induced dopaminergic neurotoxicity in the C57BL/6J female mouse. Brain Res 933:130–138

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA, Shvedova AA, Kisin E, O’Callaghan JP, Kommineni C, Miller DB (2002b) d-MDMA during vitamin E deficiency: effects on dopaminergic neurotoxicity and hepatotoxicity. Brain Res 933:150–163

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Elayan I, Hanson GR, Foltz RL, Gibb JW, Lim HK (1992) Effects of 3,4-dihydroxymethamphetamine and 2,4,5-trihydroxymethamphetamine, two metabolites of 3,4-methylenedioxymethamphetamine, on central serotonergic and dopaminergic systems. J Pharmacol Exp Ther 261:447–453

    CAS  PubMed  Google Scholar 

  • Johnson MP, Hoffman AJ, Nichols DE (1986) Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol 132:269–276

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P (1993) Time course of the extracellular dopamine and behavioural sensitization to cocaine. I. Dopamine axon terminals. J Neurosci 13:266–275

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P, White SR (1998) MDMA elicits behavioural and neurochemical sensitization in rats. Neuropharmacology 18:469–479

    CAS  Google Scholar 

  • Kennedy LT, Hanbauer I (1983) Sodium-sensitive cocaine binding to rat striatal membrane: possible relationship to dopamine uptake sites. J Neurochem 41:172–178

    CAS  PubMed  Google Scholar 

  • Kish SJ, Furukawa Y, Ang L, Vorce SP, Kalasinsky KS (2000) Striatal serotonin is depleted in brain of a human MDMA (ecstasy) user. Neurology 55:294–296

    CAS  PubMed  Google Scholar 

  • Kleven MS, Woolverton WL, Seiden LS (1989) Evidence that both intragastric and subcutaneous administration of methylenedioxymethylamphetamine (MDMA) produce serotonin neurotoxicity in rhesus monkeys. Brain Res 488:121–125

    CAS  PubMed  Google Scholar 

  • Koch S, Galloway MP (1997) MDMA induced dopamine release in vivo: role of endogenous serotonin. J Neural Transm 104:135–146

    PubMed  Google Scholar 

  • Kumagai Y, Lin LY, Hiratsuka A, Narimatsu S, Suzuki T, Yamada H, Oguri K, Yoshimura H, Cho AK (1994) Participation of cytochrome P450-2B and -2D isozymes in the demethylenation of methylenedioxymethamphetamine enantiomers by rats. Mol Pharmacol 45:359–365

    CAS  PubMed  Google Scholar 

  • Kuniyoshi SM, Jankovic J (2003) MDMA and Parkinsonism. N Engl J Med 349:96–97

    Article  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Rosenblatt W, Zea-Ponce Y, Zoghbi SS, Baldwin RM, Charney DS, Hoffer PB, Kung HF, et al. (1995) SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med 36:1182–1190

    CAS  PubMed  Google Scholar 

  • Lebsanft HB, Mayerhofer A, Kovar KA, Schmidt WJ (2003) Is the ecstasy-induced ipsilateral rotation in 6-hydroxydopamine unilaterally lesioned rats dopamine independent? J Neural Transm 110:707–718

    CAS  PubMed  Google Scholar 

  • Lew R, Sabol KE, Chou C, Vosmer GL, Richards J, Seiden LS (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part II: radioligand binding and autoradiography studies. J Pharmacol Exp Ther 276:855–865

    CAS  PubMed  Google Scholar 

  • Lieberman JA, Kinon BJ, Loebel AD (1990) Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr Bull 16:97–110

    CAS  PubMed  Google Scholar 

  • Liechti ME, Vollenweider FX (2000) Acute psychological and physiological effects of MDMA (“ecstasy”) after haloperidol pretreatment in healthy humans. Eur Neuropsychopharmacol 10:289–295

    CAS  PubMed  Google Scholar 

  • Lim HK, Foltz RL (1988) In vivo and in vitro metabolism of 3,4-(methylenedioxy)methamphetamine in the rat: identification of metabolites using an ion trap detector. Chem Res Toxicol 1:370–378

    CAS  PubMed  Google Scholar 

  • Lim HK, Foltz RL (1991a) In vivo formation of aromatic hydroxylated metabolites of 3,4-(methylenedioxy)methamphetamine in the rat: identification by ion trap tandem mass spectrometric (MS/MS and MS/MS/MS) techniques. Biol Mass Spectrom 20:677–686

    CAS  PubMed  Google Scholar 

  • Lim HK, Foltz RL (1991b) Ion trap tandem mass spectrometric evidence for the metabolism of 3,4-(methylenedioxy)methamphetamine to the potent neurotoxins 2,4,5-trihydroxymethamphetamine and 2,4,5-trihydroxyamphetamine. Chem Res Toxicol 4:626–632

    CAS  PubMed  Google Scholar 

  • Lin LY, Kumagai Y, Cho AK (1992) Enzymatic and chemical demethylenation of (methylenedioxy)amphetamine and (methylenedioxy)methamphetamine by rat brain microsomes. Chem Res Toxicol 5:401–406

    CAS  PubMed  Google Scholar 

  • Logan BJ, Laverty R, Sanderson WD, Yee YB (1988) Differences between rats and mice in MDMA (methylenedioxymethamphetamine) neurotoxicity. Eur J Pharmacol 152:227–234

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094

    CAS  PubMed  Google Scholar 

  • Malberg JE, Sabol KE, Seiden LS (1996) Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature in the rat. J Pharmacol Exp Ther 278:258–267

    CAS  PubMed  Google Scholar 

  • Mann H, Ladenheim B, Hirata H, Moran TH, Cadet JL (1997) Differential toxic effects of methamphetamine (METH) and methylenedioxymethamphetamine (MDMA) in multidrug-resistant (mdr1a) knockout mice. Brain Res 769:340–346

    CAS  PubMed  Google Scholar 

  • Marek GJ, Vosmer G, Seiden LS (1990) The effects of monoamine uptake inhibitors and methamphetamine on neostriatal 6-hydroxydopamine (6-OHDA) formation, short-term monoamine depletions and locomotor activity in the rat. Brain Res 516:1–7

    Article  CAS  PubMed  Google Scholar 

  • Margolis J (2001) Ecstasy’s dividend. Time 19:58–59

    Google Scholar 

  • Marston HM, Reid ME, Lawrence JA, Olverman HJ, Butcher SP (1999) Behavioural analysis of the acute and chronic effects of MDMA treatment in the rat. Psychopharmacology 144:67–76

    Google Scholar 

  • Maurer HH, Bickeboeller-Friedrich J, Kraemer T, Peters FT (2000) Toxicokinetics and analytical toxicology of amphetamine-derived designer drugs (“ecstasy”). Toxicol Lett 112–113:133–142

    Google Scholar 

  • McCann UD, Ricaurte GA (1991) Major metabolites of (±)3,4-methylenedioxyamphetamine (MDA) do not mediate its toxic effects on brain serotonin neurons. Brain Res 545:279–282

    Article  CAS  PubMed  Google Scholar 

  • McCann UD, Ridenour A, Shaham Y, Ricaurte GA (1994) Serotonin neurotoxicity after (±)3,4-methylenedioxymethamphetamine (MDMA; “ecstasy”): a controlled study in humans. Neuropsychopharmacology 10:129–138

    CAS  PubMed  Google Scholar 

  • McCann UD, Mertl M, Eligulashvili V, Ricaurte GA (1999) Cognitive performance in (±)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) users: a controlled study. Psychopharmacology 143:417–425

    CAS  PubMed  Google Scholar 

  • McCreary AC, Bankson MG, Cunningham KA (1999) Pharmacological studies of the acute and chronic effects of (+)-3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B/1D receptors. J Pharmacol Exp Ther 290:965–973

    CAS  PubMed  Google Scholar 

  • McIntosh LJ, Hong KE, Sapolsky RM (1998) Glucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studies. Brain Res 791:209–214

    Article  CAS  PubMed  Google Scholar 

  • Mechan AO, Esteban B, O’Shea E, Elliott JM, Colado MI, Green AR (2002) The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) to rats. Br J Pharmacol 135:170–180

    CAS  PubMed  Google Scholar 

  • Miller DB, O’Callaghan JP (1994) Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:752–60

    Google Scholar 

  • Miller RT, Lau SS, Monks TJ (1995) Metabolism of 5-(glutathion-S-yl)-α-methyldopamine following intracerebroventricular administration to male Sprague-Dawley rats. Chem Res Toxicol 8:634–641

    CAS  PubMed  Google Scholar 

  • Miller RT, Lau SS, Monks TJ (1996) Effects of intracerebroventricular administration of 5-(glutathion-S-yl)-α-methyldopamine on brain dopamine, serotonin, and norepinephrine concentrations in male Sprague-Dawley rats. Chem Res Toxicol 9:457–465

    Google Scholar 

  • Miller RT, Lau SS, Monks TJ (1997) 2,5-bis-(Glutathion-S-yl)-α-methyldopamine, a putative metabolite of (±)-3,4-methylenedioxyamphetamine, decreases brain serotonin concentrations. Eur J Pharmacol 323:173–180

    CAS  PubMed  Google Scholar 

  • Mintzer S, Hickenbottom S, Gilman S (1999a) More about Parkinsonism after taking ecstasy. N Engl J Med 341:1400–1401

    Article  CAS  Google Scholar 

  • Mintzer S, Hickenbottom S, Gilman S (1999b) Parkinsonism after taking ecstasy. N Engl J Med 340:1443

    Article  CAS  Google Scholar 

  • Mohaghegh RA, Soulsby ME, Skinner RD, Kennedy RH (1997) The interaction between the central and peripheral nervous systems in mediating the thermic effect of methamphetamine. Ann N Y Acad Sci 813:197–203

    CAS  PubMed  Google Scholar 

  • Molliver ME, O’Hearn E, Battaglia G, De Souza ER (1986) Direct intracerebral administration of MDMA and MDA does not produce serotonin neurotoxicity. Soc Neurosci Abstr 12:1234

    Google Scholar 

  • Morgan AE, Horan B, Dewey SL, Ashby CR Jr (1997) Repeated administration of 3,4-methylenedioxymethamphetamine augments cocaine’s action on dopamine in the nucleus accumbens: a microdialysis study. Eur J Pharmacol 331:R1–R3

    CAS  PubMed  Google Scholar 

  • Nash JF, Brodkin J (1991) Microdialysis studies on 3,4-methylenedioxymethamphetamine-induced dopamine release: effect of dopamine uptake inhibitors. J Pharmacol Exp Ther 259:820–825

    Google Scholar 

  • Nash JF, Yamamoto BK (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine. Brain Res 581:237–243

    CAS  PubMed  Google Scholar 

  • Nash JF, Meltzer HY, Gudelsky GA (1988) Elevation of serum prolactin and corticosterone concentrations in the rat after the administration of 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 245:873–879

    CAS  PubMed  Google Scholar 

  • Nixdorf WI, Burrows KB, Gudelsky GA, Yamamoto BK (2001) Enhancement of 3,4-methylenedioxymethamphetamine neurotoxicity by the energy inhibitor malonate. J Neurochem 77:647–654

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    Google Scholar 

  • O’Loinsigh ED, Boland G, Kelly JP, O’Boyle KM (2001) Behavioural, hyperthermic and neurotoxic effects of 3,4-methylenedioxymethamphetamine analogues in the Wistar rat. Prog Neuropsychopharmacol Biol Psychiatry 25:621–638

    Article  PubMed  Google Scholar 

  • O’Shea E, Colado MI (2003) Is frequent dosing with ecstasy a risky business for dopamine containing neurons. Trends Pharmacol Sci 24:272–274

    Google Scholar 

  • O’Shea E, Granados R, Esteban B, Colado MI, Green AR (1998) The relationship between the degree of neurodegeneration of rat brain 5-HT nerve terminals and the dose and frequency of administration of MDMA (“ecstasy”). Neuropharmacology 37:919-926

    Article  CAS  PubMed  Google Scholar 

  • O’Shea E, Esteban B, Camarero J, Green AR, Colado MI (2001) Effect of GBR 12909 and fluoxetine on the acute and long term changes induced by MDMA (“ecstasy”) on the 5-HT and dopamine concentrations in mouse brain. Neuropharmacology 40:65–74

    Google Scholar 

  • Paris JM, Cunningham KA (1991) Lack of serotonin neurotoxicity after intraraphe microinjection of (+)-3,4-methylenedioxymethamphetamine (MDMA). Brain Res Bull 28:115–119

    Article  Google Scholar 

  • Parrott AC (2004) Is ecstasy MDMA? A review of the proportion of ecstasy tablets containing MDMA, their dosage levels and the changing perceptions of purity. Psychopharmacology (in press)

  • Parrott AC, Sisk E, Turner JJ (2000) Psychobiological problems in heavy “ecstasy” (MDMA) polydrug users. Drug Alcohol Depend 60:105–110

    CAS  PubMed  Google Scholar 

  • Pettit HO, Pan H-T, Parsons LH, Justice JB (1990) Extracellular concentrations of cocaine and dopamine are enhanced by chronic cocaine administration. J Neurochem 55:798–804

    CAS  PubMed  Google Scholar 

  • Reneman L, Booij J, de Bruin K, Reitsma JB, de Wolff FA, Boudewijn Gunning W, den Heeten GJ, van den Brink W (2001) Effects of dose, sex, and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurones. Lancet 358:1864–1869

    CAS  PubMed  Google Scholar 

  • Reneman L, Booij J, Lavalaye J, de Bruin K, Reitsma JB, Gunning B, de Heeten GJ, van den Brink W (2002) Use of amphetamine by recreational users of ecstasy (MDMA) is associated with reduced striatal dopamine trasnporter densities: a [123I]β-CIT SPECT-preliminary report. Psychopharmacology 159:335–340

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, McCann UD (1992) Neurotoxic amphetamine analogues: effects in monkeys and implications for humans. Ann N Y Acad Sci 648:371–382

    CAS  PubMed  Google Scholar 

  • Ricaurte G, Bryan G, Strauss L, Seiden L, Schuster C (1985) Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals. Science 229:986–988

    CAS  PubMed  Google Scholar 

  • Ricaurte GA, DeLanney LE, Wiener SG, Irwin I, Langston JW (1988a) 5-hydroxyindoleacetic acid in cerebrospinal fluid reflects serotonergic damage induced by 3,4-methylenedioxymethamphetamine in CNS of non-human primates. Brain Res 474:2359–2363

    Article  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988b) (±)-3,4-methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260:51–55

    CAS  PubMed  Google Scholar 

  • Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988c) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 446:165–168

    CAS  PubMed  Google Scholar 

  • Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2002) Severe dopaminergic neurotoxicity in primates after a single recreational dose regimen of MDMA (“ecstasy”). Science (Wash) 297:2260–2263

    Google Scholar 

  • Ricaurte GA, Yuan J, Hatzidimitriou, Cord BJ, McCan UD (2003) Retraction. Science (Wash) 301:1479

  • Saadat KS, Elliott, JM, Colado MI, Green AR (2004) The hyperthermic and neurotoxic effect of 3,4-methylenedioxymethamphetamine (MDMA) in guinea pigs. Psychopharmacology (in press)

  • Sabol KE, Seiden LS (1998) Reserpine attenuates d-amphetamine and MDMA-induced transmitter release in vivo: a consideration of dose, core temperature and dopamine synthesis. Brain Res 806:69–78

    Article  CAS  PubMed  Google Scholar 

  • Sabol KE, Lew R, Richards JB, Vosmer GL, Seiden LS (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part I: synaptosomal uptake and tissue concentrations. J Pharmacol Exp Ther 276:846–854

    CAS  PubMed  Google Scholar 

  • Sanchez V, Camarero J, O’Shea E, Green AR, Colado MI (2003) Differential effect of dietary selenium on the long term neurotoxicity induced by MDMA in mice and rats. Neuropharmacology 44:449–461

    Article  CAS  PubMed  Google Scholar 

  • Scearce-Levie K, Viswanathan SS, Hen R (1999) Locomotor response to MDMA is attenuated in knockout mice lacking the 5-HT1B receptor. Psychopharmacology 141:154–161

    CAS  PubMed  Google Scholar 

  • Scheffel U, Szabo Z, Mathews WB, Finley PA, Dannals RF, Ravert HT, Szabo K, Yuan J, Ricaurte GA (1998) In vivo detection of short- and long-term MDMA neurotoxicity—a positron emission tomography study in the living baboon brain. Synapse 29:183–192

    Article  CAS  PubMed  Google Scholar 

  • Schlaepfer TE, Pearlson GD, Wong DF, Marenco S, Dannals RF (1997) PET study of competition between intravenous cocaine and [11C]raclopride at dopamine receptors in human subjects. Am J Psychiatry 154:1209–1213

    CAS  PubMed  Google Scholar 

  • Schmidt CJ (1987) Acute administration of methylenedioxymethamphetamine: comparison with the neurochemical effects of its N-desmethyl and N-ethyl analogs. Eur J Pharmacol 136:81–88

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ, Kehne JH (1990) Neurotoxicity of MDMA: neurochemical effects. Ann N Y Acad Sci 600:665–681

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Levin JA, Lovenberg W (1987) In vitro and in vivo neurochemical effects of methylenedioxymethamphetamine on striatal monoaminergic systems in the rat brain. Biochem Pharmacol 36:747–755

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Abbate GM, Taylor VL (1990a) Methylenedioxymethamphetamine-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2 receptors. Brain Res 529:85–90

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Abbate GM, Black CK, Taylor VL (1990b) Selective 5-hydroxytryptamine2 receptor antagonists protect against the neurotoxicity of methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 255:478–483

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1990c) Antagonism of the neurotoxicity due to a single administration of ethylenedioxymethamphetamine. Eur J Pharmacol 181:59–70

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ, Taylor VL, Abbate GM, Nieduzak TR (1991a) 5-HT2 antagonists stereoselectively prevent the neurotoxicity of 3,4-methylenedioxymethamphetamine by blocking the acute stimulation of dopamine synthesis: reversal by l-dopa. J Pharmacol Exp Ther 256:230–235

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1991b) l-Dopa potentiation of the serotonergic deficits due to a single administration of 3,4-methylenedioxymethamphetamine, p-chloroamphetamine and methamphetamine to rats. Eur J Pharmacol 203:41–49

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ, Mayerhofer A, Meyer A, Kovar KA (2002) Ecstasy counteracts catalepsy in rats, an antiparkinsonian effect? Neurosci Lett 330:251–254

    Article  PubMed  Google Scholar 

  • Segura M, Ortuño J, Farre M, McLure JA, Pujadas M, Pizarro N, Llebaria A, Joglar J, Roset PN, Segura J, de La Torre R (2001) 3,4-Dihydroxymethamphetamine (HHMA). A major in vivo 3,4-methylenedioxymethamphetamine (MDMA) metabolite in humans. Chem Res Toxicol 14:1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Semple DM, Ebmeier KP, Glabus MF, O’Carroll RE, Johnstone EC (1999) Reduced in vivo binding to the serotonin transporter in the cerebral cortex of MDMA (“ecstasy”) users. Br J Psychiatry 175:63–69

    CAS  PubMed  Google Scholar 

  • Sewell RA, Cozzi NV (1999) More about Parkinsonism after taking ecstasy. N Engl J Med 341:1400–1401

    Article  CAS  Google Scholar 

  • Shankaran M, Gudelsky GA (1998) Effect of 3,4-methylenedioxymethamphetamine (MDMA) on hippocampal dopamine and serotonin. Pharmacol Biochem Behav 61:361–366

    Article  CAS  PubMed  Google Scholar 

  • Shankaran M, Gudelsky GA (1999) A neurotoxic regimen of MDMA suppresses behavioral, thermal and neurochemical responses to subsequent MDMA administration. Psychopharmacology 147:66–72

    Google Scholar 

  • Shankaran M, Yamamoto BK, Gudelsky GA (1999) Mazindol attenuates the 3,4-methylenedioxymethamphetamine-induced formation of hydroxyl radicals and long-term depletion of serotonin in the striatum. J Neurochem 72:2516–2522

    CAS  PubMed  Google Scholar 

  • Slikker W Jr, Ali SF, Scallet AC, Frith CH, Newport GD, Bailey JR (1988) Neurochemical and neurohistological alterations in the rat and monkey produced by orally administered methylenedioxymethamphetamine (MDMA). Toxicol Appl Pharmacol 96:448–457

    Google Scholar 

  • Slikker W Jr, Holson RR, Ali SF, Kolta MG, Paule MG, Scallet AC, McMillan DE, Bailey JR, Hong JS, Scalzo FM (1989) Behavioral and neurochemical effects of orally administered MDMA in the rodent and nonhuman primate. Neurotoxicology 10:529–542

    CAS  PubMed  Google Scholar 

  • Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylenedioxymethamphetamine [(±)MDMA] on locomotion and serotonin syndrome behaviour in the rat. Pharmacol Biochem Behav 32:835–840

    Google Scholar 

  • Sprague JE, Nichols DE (1995) The monoamine oxidase-B inhibitor l-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits. J Pharmacol Exp Ther 273:667–673

    CAS  PubMed  Google Scholar 

  • Sprague JE, Everman SL, Nichols DE (1998) An integrated hypothesis for the serotonergic axonal loss induced by 3,4-methylenedioxymethamphetamine. Neurotoxicology 19:427–442

    CAS  PubMed  Google Scholar 

  • Stone DM, Stahl DC, Hanson GR, Gibb JW (1986) The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128:41–48

    CAS  PubMed  Google Scholar 

  • Stone DM, Hanson GR, Gibb JW (1987) Differences in the central serotonergic effects of methylenedioxymethamphetamine (MDMA) in mice and rats. Neuropharmacology 26:1657–1661

    Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 247:79–87

    CAS  PubMed  Google Scholar 

  • Sugimoto Y, Ohkura M, Inoue K, Yamada J (2001) Involvement of serotonergic and dopaminergic mechanisms in hyperthermia induced by a serotonin-releasing drug, p-chloroamphetamine in mice. Eur J Pharmacol 430:265–268

    Article  CAS  PubMed  Google Scholar 

  • Tucker GT, Lennard MS, Ellis SW, Woods HF, Cho AK, Lin,LY, Hiratsuka A, Schmitz DA, Chu TYY (1994) The demethylenation of methylenedioxymethamphetamine (“ecstasy”) by debrisoquine hydroxylase (CYP2D6). Biochem Pharmacol 47:1151–1156

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, Chen AD, Dewey SL, Pappas N (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833

    CAS  PubMed  Google Scholar 

  • White SR, Duffy P, Kalivas PW (1994) Methylenedioxymethamphetamine depresses glutamate evoked neuronal firing and increases extracellular levels of dopamine and serotonin in the nucleus accumbens in vivo. Neuroscience 62:41–50

    CAS  PubMed  Google Scholar 

  • White SR, Obradovic T, Imel KM, Wheaton MJ (1996) The effects of methylenedioxymethamphetamine (MDMA, “ecstasy”) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 49:455–479

    CAS  PubMed  Google Scholar 

  • Wilson MA, Ricaurte GA, Molliver ME (1989) Distinct morphologic classes of serotonergic axons in primates exhibit differential vulnerability to the psychotropic drug 3,4-methylenedioxymethamphetamine. Neuroscience 28:121–137

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto BK, Spanos LJ (1988) The acute effects of methylenedioxymethamphetamine on dopamine release in the awake-behaving rat. Eur J Pharmacol 148:195–203

    CAS  PubMed  Google Scholar 

  • Yamamoto BK, Nash JF, Gudelsky GA (1995) Modulation of methylenedioxymethamphetamine-induced striatal dopamine release by the interaction between serotonin and γ-aminobutyric acid in the substantia nigra. J Pharmacol Exp Ther 273:1063–1070

    CAS  PubMed  Google Scholar 

  • Yamawaki S, Lai H, Horita A (1983) Dopaminergic and serotonergic mechanisms of thermoregulation: mediation of thermal effects of apomorphine and dopamine. J Pharmacol Exp Ther 227:383–388

    CAS  PubMed  Google Scholar 

  • Yuan J, Cord BJ, McCann UD, Callahan T, Ricaurte GA (2002) Effect of depleting vesicular and cytoplasmic dopamine on methylenedioxymethamphetamine neurotoxicity. J Neurochem 80:960–969

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Castagnoli Jr N, Ricaurte GA, Steele T, Martello M (1992) Synthesis and neurotoxicological evaluation of putative metabolites of the serotonergic neurotoxin 2-(methylamino)-1-[3,4-(methylenedioxy)phenyl]propane [(methylenedioxy)methamphetamine]. Chem Res Toxicol 5:89–94

    CAS  PubMed  Google Scholar 

  • Zheng YW, Laverty R (1993) Neurotoxic effects of MDMA in different strains of mice. Proc Univ Otago Med Sch 71:5–6

    Google Scholar 

Download references

Acknowledgement

We thank all the colleagues who we have had the pleasure of working with on MDMA over the years. M.I.C. thanks Plan Nacional sobre Drogas (Ministerio del Interior), Ministerio de Ciencia y Tecnologia (SAF2001-1437), Ministerio de Sanidad (FIS01/0844; FIS G03/005) and Fundacion MapfreMedicina for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Isabel Colado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colado, M.I., O’Shea, E. & Green, A.R. Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology 173, 249–263 (2004). https://doi.org/10.1007/s00213-004-1788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1788-8

Keywords

Navigation